Description and molecular characterisation of Babesia ailuropodae n. sp., a new piroplasmid species infecting giant pandas

Author:

Xiong Lang,Yang Guangyou

Abstract

Abstract Background Babesia spp. are protozoan parasites that infect the red blood cells of domesticated animals, wildlife and humans. A few cases of giant pandas (a flagship species in terms of wildlife conservation) infected with a putative novel Babesia sp. have been reported. However, comprehensive research on the morphological and molecular taxonomic classification of this novel Babesia sp. is still lacking. This study was designed to close this gap and formally describe this new Babesia sp. infecting giant pandas. Methods Detailed morphological, molecular and phylogenetic analyses were conducted to characterise this Babesia sp. and to assess its systematic relationships with other Babesia spp. Blood samples from giant pandas infected with Babesia were subjected to microscopic examination. The 18S ribosomal RNA (18S rRNA), cytochrome b (cytb) and mitochondrial genome (mitogenome) of the new Babesia sp. were amplified, sequenced and assembled using DNA purified from blood samples taken from infected giant pandas. Based on the newly generated 18S rRNA, cytb and mitogenome sequences, phylogenetic trees were constructed. Results Morphologically, the Babesia sp. from giant pandas exhibited various forms, including round to oval ring-shaped morphologies, resembling those found in other small canine Babesia spp. and displaying typical tetrads. Phylogenetic analyses with the 18S rRNA, cytb and mitogenome sequences revealed that the new Babesia sp. forms a monophyletic group, with a close phylogenetic relationship with the Babesia spp. that infect bears (Ursidae), raccoons (Procyonidae) and canids (Canidae). Notably, the mitogenome structure consisted of six ribosomal large subunit-coding genes (LSU1-6) and three protein-coding genes (cytb, cox3 and cox1) arranged linearly. Conclusions Based on coupled morphological and genetic analyses, we describe a novel species of the genus Babesia, namely, Babesia ailuropodae n. sp., which infects giant pandas. Graphical Abstract

Funder

Chengdu Research Base of Giant Panda Breeding

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3