Author:
Zeb Ismail,Parizi Luís Fernando,Israr Muhammad,da Silva Vaz Itabajara,Ali Abid
Abstract
Abstract
Background
Tick control is mostly hampered by the rise of acaricide-resistant tick populations. Significant efforts have focused on developing alternative control methods, including cross-species protective and/or cocktail-based anti-tick vaccines, to achieve protection against various tick species.
Methods
In this study, full-length open reading frames encoding subolesin (SUB) from Rhipicephalus microplus and ferritin 2 (FER2) from Hyalomma anatolicum as well as the partial 60S acidic ribosomal protein (P0) from R. microplus were cloned, expressed in Escherichia coli and used as vaccine antigens against Rhipicephalus sanguineus sensu lato (R. sanguineus s.l.) infestation in rabbits.
Results
In silico analyses revealed that the SUB, P0 and FER2 proteins were antigenic and displayed limited similarity to the host's homologous proteins. The proteins shared identities of 97.5%, 100% and 89.5% with their SUB, P0 and FER2 R. sanguineus s.l. orthologous sequences, respectively. Antibodies against each recombinant protein cross-recognized the native proteins in the different tissues and developmental stages of R. sanguineus s.l. Overall efficacy of the SUB, FER2 and cocktail (SUB+FER2+P0) vaccines against R. sanguineus s.l. infestation was 86.3%, 95.9% and 90.9%, respectively.
Conclusions
Both mono-antigen and the cocktail anti-tick vaccines affected the biological parameters of R. sanguineus s.l. infestation in the rabbit model, which could be extrapolated to its infested host under natural conditions. These findings support the possibility of using mono-antigenic and cocktail-based vaccines for large-scale anti-tick vaccine development against multiple tick species.
Graphical Abstract
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献