Author:
Enayati Ahmadali,Valadan Reza,Bagherzadeh Mahboobeh,Cheraghpour Mohammad,Nikookar Seyed Hassan,Fazeli-Dinan Mahmoud,Hosseini-Vasoukolaei Nasibeh,Sahraei Rostami Farzaneh,Shabani Kordshouli Razieh,Raeisi Ahmad,Nikpour Fatemeh,Mirolyaei Abdolreza,Bagheri Fatemeh,Sedaghat Mohammad Mehdi,Zaim Morteza,Weetman David,Hemigway Janet
Abstract
Abstract
Background
Aedes aegypti is the main vector of arboviral diseases worldwide. The species invaded and became established in southern Iran in 2020. Insecticide-based interventions are primarily used for its control. With insecticide resistance widespread, knowledge of resistance mechanisms is vital for informed deployment of insecticidal interventions, but information from Iranian Ae. aegypti is lacking.
Methods
Fifty-six Ae. aegypti specimens were collected from the port city of Bandar Lengeh in Hormozgan Province in the South of Iran in 2020 and screened for kdr mutations. The most common kdr mutations in Latin America and Asia (V410L, S989P, V1016G/I and F1534C), especially when present in combinations, are highly predictive of DDT and pyrethroid resistance were detected. Phylogenetic analyses based on the diversity of S989P and V1016G/I mutations were undertaken to assess the phylogeography of these kdr mutations.
Results
Genotyping all four kdr positions of V410L, S989P, V1016G/I and F1534C revealed that only 16 out of the 56 (28.57%) specimens were homozygous wild type for all kdr mutation sites. Six haplotypes including VSVF (0.537), VSVC (0.107), LSVF (0.016), LSIF (0.071), VPGC (0.257) and LPGC (0.011) were detected in this study. For the first time, 11 specimens harbouring the V410L mutation, and 8 samples with V1016I mutation were found. V410L and V1016I were coincided in 8 specimens. Also, six specimens contained 1016G/I double mutation which was not reported before.
Conclusions
The relatively high frequency of these kdr mutations in Iranian Ae. aegypti indicates a population exhibiting substantial resistance to pyrethroid insecticides, which are used widely in control operations and household formulations. The detection of the 410L/1016I kdr mutant haplotype in Iranian Ae. aegypti suggests possible convergence of invasive populations from West Africa or Latin America. However, as Iran has very limited maritime/air connections with those African countries, a Latin American origin for the invasive Ae. aegypti in Iran is more plausible.
Graphical abstract
Funder
the Research Vice-Chancellor of Mazandaran University of Medical Sciences
World Health Organization
Publisher
Springer Science and Business Media LLC
Reference73 articles.
1. WHO. Global strategy for dengue prevention and control 2012–2020. 2012.
2. Paixão ES, Teixeira MG, Rodrigues LC. Zika, chikungunya and dengue: the causes and threats of new and re-emerging arboviral diseases. BMJ Glob Health. 2018;3:e000530.
3. Liu-Helmersson J, Brännström Å, Sewe MO, Semenza JC, Rocklöv J. Estimating past, present, and future trends in the global distribution and abundance of the arbovirus vector Aedes aegypti under climate change scenarios. Front Public Health. 2019;7:148.
4. Ducheyne E, Minh NNT, Haddad N, Bryssinckx W, Buliva E, Simard F, et al. Current and future distribution of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in WHO Eastern Mediterranean Region. Int J Health Geogr. 2018;17:4.
5. ECDC. Aedes albopictus - current known distribution: January 2019. 2019 https://www.ecdc.europa.eu/en/publications-data/aedes-albopictus-current-known-distribution-january-2019. Accessed 17 Dec 2019.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献