Fibrotic remodeling in joint diseases: induction and inhibition of fibrosis in fibroblast-like synoviocytes

Author:

Madsen Sofie FalkenløveORCID,Madsen Sarah Spliid,Madrid Alexander Scheller,Andersen Mikkel Rathsach,Bay-Jensen Anne-Christine,Thudium Christian S.

Abstract

Abstract Background We aimed to investigate the development of synovial fibrosis in vitro and how the fibrosis can be halted. Synovial fibrosis causes joint stiffness in arthritic diseases. The pathway of the fibrotic growth factor, transforming growth factor-beta (TGF-β), has been associated with joint pain in osteoarthritis (OA) and with the fibroid phenotype of rheumatoid arthritis (RA). This suggests that synovial fibrosis, thus accumulation of extracellular matrix (ECM) proteins, plays a role in the clinical manifestations of the diseases. Improving our understanding of fibrotic development may aid in selecting appropriate treatments and development of drugs that can target synovial fibrosis. Methods We isolated primary fibroblast-like synoviocytes (FLS) from the synovial membrane of patients undergoing total knee replacement surgery. To investigate the development of synovial fibrosis, the FLS were cultured in a crowded in vitro model mimicking the ECM. TGF-β1 was used as the fibrotic initiator, the activin receptor-like kinase 5 inhibitor (ALK5i), the anti-fibrotic drug nintedanib, and the anti-inflammatory drug tofacitinib were used as fibrotic inhibitors. The ECM protein formation was quantified in the conditioned media using specific biomarkers of type I, III, and VI collagen formation and fibronectin turnover. Results The TGF-β stimulation inducted fibrogenesis by increasing the biomarkers of fibronectin turnover, type I, III, and VI collagen formation. ALK5i and nintedanib inhibited the TGF-β response across all biomarkers. Tofacitinib trended towards inhibiting TGF-β response with up to 78% inhibition. All the treatments preserved cell viability. Conclusion We have established an in vitro model for assessing fibrogenesis in primary FLS, which can be used to assess the anti-fibrotic effect of multiple drug types. Our study implies that synovial fibrosis can be induced by TGF-β, which additionally can be halted by both direct and indirect inhibition with anti-fibrotic substances. The anti-inflammatory drug tofacitinib also halted the fibrogenesis to some extent; thus, it may exert an anti-fibrotic effect.

Funder

Copenhagen University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3