Efficient strategy to isolate exosomes using anti-CD63 antibodies conjugated to gold nanoparticles

Author:

Panwar Dikshita,Shrivastava Deepali,Kumar Arvind,Gupta Lavleen Kumar,Kumar N. S. Sampath,Chintagunta Anjani DeviORCID

Abstract

AbstractExosomes, a subpopulation of Extracellular vesicles (EVs), are cell-secreted vesicles found in the majority of biological fluids, including breast milk, tears, sweat, blood and, urine. The density and size of these vesicles depend on a variety of factors, including age, gender and the biological condition of the individual. Researchers are now focusing on the selective extraction of exosomes from bodily fluids due to the unique biomolecule composition of exosomes, which is critical for diagnosis, disease, and regeneration. Furthermore, current approaches for exosome isolation have limitations, necessitating the development of a simpler and more effective technique to achieve this goal. In this study, we investigated a quick and effective strategy for isolating exosomes from serum using a bench-top centrifuge. This was accomplished by raising antibodies against exosome surface tetraspanins (CD9, CD63 & CD81) in Leghorn chickens due to their phylogenetic distance from humans and cost-effectiveness for commercial use. In order to separate exosomes from a complex biological fluid, the antibodies were further coupled with gold nanoparticles (AuNPs). The findings were validated using ELISA, spectrophotometry, and transmission electron microscopy (TEM). Using this technique, exosome isolation from serum was achieved rapidly and these were captured by using anti CD63 antibodies bound to AuNPs. To summarize, exosomes were purified from serum using anti-CD63 antibodies conjugated to gold nanoparticles (IgY@AuNPs). Consequently, the approach for exosome isolation from biological fluid could be useful for clinically monitoring the biological state of the patients.

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3