In silico analysis of the Val66Met mutation in BDNF protein: implications for psychological stress

Author:

Shan Muhammad Adnan,Khan Muhammad Umer,Ishtiaq Warda,Rehman Raima,Khan Samiullah,Javed Muhammad Arshad,Ali QurbanORCID

Abstract

AbstractThe brain-derived neurotrophic factor (BDNF) involves stress regulation and psychiatric disorders. The Val66Met polymorphism in the BDNF gene has been linked to altered protein function and susceptibility to stress-related conditions. This in silico analysis aimed to predict and analyze the consequences of the Val66Met mutation in the BDNF gene of stressed individuals. Computational techniques, including ab initio, comparative, and I-TASSER modeling, were used to evaluate the functional and stability effects of the Val66Met mutation in BDNF. The accuracy and reliability of the models were validated. Sequence alignment and secondary structure analysis compared amino acid residues and structural components. The phylogenetic analysis assessed the conservation of the mutation site. Functional and stability prediction analyses provided mixed results, suggesting potential effects on protein function and stability. Structural models revealed the importance of BDNF in key biological processes. Sequence alignment analysis showed the conservation of amino acid residues across species. Secondary structure analysis indicated minor differences between the wild-type and mutant forms. Phylogenetic analysis supported the evolutionary conservation of the mutation site. This computational study suggests that the Val66Met mutation in BDNF may have implications for protein stability, structural conformation, and function. Further experimental validation is needed to confirm these findings and elucidate the precise effects of this mutation on stress-related disorders.

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Biophysics

Reference70 articles.

1. Advani T, Koek W, Hensler JG (2009) Gender differences in the enhanced vulnerability of BDNF+/− mice to mild stress. Nature 12:583–588

2. Adzhubei I, Jordan DM, Sunyaev SR (2013) Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Human Genet. 76:7.20.21-27.20.41

3. Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I, Pupko T, Ben-Tal N (2016) ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res 44:W344–W350

4. Autry AE, Monteggia LM (2012) Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev 64:238–258

5. Bashir H, Zafar S, Rehman R, Khalid M, Amjad I (2023) Breeding potential of sesame for waterlogging stress in Asia. Bio Agric Sci Res J 2023:10–10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3