N-glycolyl chondroitin synthesis using metabolically engineered E. coli

Author:

Awofiranye Adeola E.,Baytas Sultan N.,Xia Ke,Badri Abinaya,He Wenqin,Varki Ajit,Koffas Mattheos,Linhardt Robert J.ORCID

Abstract

AbstractN-glycolyl chondroitin (Gc-CN) is a metabolite of N-glycolylneuraminic acid (Neu5Gc), a sialic acid that is commonly found in mammals, but not humans. Humans can incorporate exogenous Neu5Gc into their tissues from eating red meat. Neu5Gc cannot be biosynthesized by humans due to an evolutionary mutation and has been implicated in causing inflammation causing human diseases, such as cancer. The study Neu5Gc is important in evolutionary biology and the development of potential cancer biomarkers. Unfortunately, there are several limitations to detecting Neu5Gc. The elimination of Neu5Gc involves a degradative pathway leading to the incorporation of N-glycolyl groups into glycosaminoglycans (GAGs), such as Gc-CN. Gc-CN has been found in humans and in animals including mice, lamb and chimpanzees. Here, we present the biosynthesis of Gc-CN in bacteria by feeding chemically synthesized N-glycolylglucosamine to Escherichia coli. A metabolically engineered strain of E. coli K4, fed with glucose supplemented with GlcNGc, converted it to N-glycolylgalactosamine (GalNGc) that could then be utilized as a substrate in the chondroitin biosynthetic pathway. The final product, Gc-CN was converted to disaccharides using chondroitin lyase ABC and analyzed by liquid chromatography–tandem mass spectrometry with multiple reaction monitoring detection. This analysis showed the incorporation of GalNGc into the backbone of the chondroitin oligosaccharide.

Funder

National Science Foundation

National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Biophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3