VPS35 and α-Synuclein fail to interact to modulate neurodegeneration in rodent models of Parkinson’s disease

Author:

Chen Xi,Tsika Elpida,Levine Nathan,Moore Darren J.ORCID

Abstract

Abstract Background Mutations in the vacuolar protein sorting 35 ortholog (VPS35) gene cause late-onset, autosomal dominant Parkinson’s disease (PD), with a single missense mutation (Asp620Asn, D620N) known to segregate with disease in families with PD. The VPS35 gene encodes a core component of the retromer complex, involved in the endosomal sorting and recycling of transmembrane cargo proteins. VPS35-linked PD is clinically indistinguishable from sporadic PD, although it is not yet known whether VPS35-PD brains exhibit α-synuclein-positive brainstem Lewy pathology that is characteristic of sporadic cases. Prior studies have suggested a functional interaction between VPS35 and the PD-linked gene product α-synuclein in lower organisms, where VPS35 deletion enhances α-synuclein-induced toxicity. In mice, VPS35 overexpression is reported to rescue hippocampal neuronal loss in human α-synuclein transgenic mice, potentially suggesting a retromer deficiency in these mice. Methods Here, we employ multiple well-established genetic rodent models to explore a functional or pathological interaction between VPS35 and α-synuclein in vivo. Results We find that endogenous α-synuclein is dispensable for nigrostriatal pathway dopaminergic neurodegeneration induced by the viral-mediated delivery of human D620N VPS35 in mice, suggesting that α-synuclein does not operate downstream of VPS35. We next evaluated retromer levels in affected brain regions from human A53T-α-synuclein transgenic mice, but find normal levels of the core subunits VPS35, VPS26 or VPS29. We further find that heterozygous VPS35 deletion fails to alter the lethal neurodegenerative phenotype of these A53T-α-synuclein transgenic mice, suggesting the absence of retromer deficiency in this PD model. Finally, we explored the neuroprotective capacity of increasing VPS35 expression in a viral-based human wild-type α-synuclein rat model of PD. However, we find that the overexpression of wild-type VPS35 is not sufficient for protection against α-synuclein-induced nigral dopaminergic neurodegeneration, α-synuclein pathology and reactive gliosis. Conclusion Collectively, our data suggest a limited interaction of VPS35 and α-synuclein in neurodegenerative models of PD, and do not provide support for their interaction within a common pathophysiological pathway.

Funder

National Institute of Neurological Disorders and Stroke

Parkinson’s Disease Foundation

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology (clinical),Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3