Author:
Cai Shengguan,Yu Gang,Chen Xianhong,Huang Yechang,Jiang Xiaogang,Zhang Guoping,Jin Xiaoli
Abstract
Abstract
Background
Grain protein content (GPC) is an important quality determinant for barley used as malt, feed as well as food. It is controlled by a complex genetic system. GPC differs greatly among barley genotypes and is also variable across different environments. It is imperative to understand the genetic control of barley GPC and identify the genotypes with less variation under the different environments.
Results
In this study, 59 cultivated and 99 Tibetan wild barley genotypes were used for a genome-wide association study (GWAS) and a multi-platform candidate gene-based association analysis, in order to identify the molecular markers associated with GPC. Tibetan wild barley had higher GPC than cultivated barley. The significant correlation between GPC and diastatic power (DP), and malt extract confirmed the importance of GPC in determining malt quality. Diversity arrays technology (DArT) markers associated with barley GPC were detected by GWAS. In addition, GWAS revealed two HvNAM genes as the candidate genes controlling GPC. No association was detected between HvNAM1 polymorphism and GPC, while a single nucleotide polymorphism (SNP) (798, P < 0.01), located within the second intron of HvNAM2, was associated with GPC. There was a significant correlation between haplotypes of HvNAM1, HvNAM2 and GPC in barley.
Conclusions
The GWAS and candidate gene based-association study may be effectively used to determine the genetic variation of GPC in barley. The DArT markers and the polymorphism of HvNAM genes identified in this study are useful in developing high quality barley cultivars in the future. HvNAM genes could play a role in controlling barley GPC.
Publisher
Springer Science and Business Media LLC
Reference36 articles.
1. See DK, Kephart V, Blake K: Mapping genes controlling variation in barley grain protein concentration. Crop Sci. 2002, 42: 680-685. 10.2135/cropsci2002.0680.
2. Clancy JA, Han F, Ullrich SE: Comparative mapping of-amylase activity QTLs among three barley crosses. North American barley genome project. Crop Sci. 2003, 43: 1043-1052. 10.2135/cropsci2003.1043.
3. Ullrich SE: Genetics and breeding of barley feed quality attributes. Barley Science: Recent Advances from Molecular Biology to Agronomy of Yield and Quality. Edited by: Slafer GA, Molina-Cano JL, Savin R, Araus JL, Romagosa I. Food Products Press: Food Products Press; 2002: 115-142.
4. Emebiria LC, Moodya DB, Horsleyb R, Panozzoa J, Read BJ: The genetic control of grain protein content variation in a doubled haploid population derived from a cross between Australian and North American two-rowed barley lines. J Cereal Sci. 2005, 41: 107-114. 10.1016/j.jcs.2004.08.012.
5. Polanda JA, Bradbury PJ, Buckler ES, Nelson RJ: Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc Natl Acad Sci USA. 2010, 108: 6893-6899.
Cited by
87 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献