Application of Plackett-Burman and central composite designs for screening and optimization of factor influencing the chromatographic conditions of HPTLC method for quantification of efonidipine hydrochloride

Author:

Chaudhari Suraj R.ORCID,Shirkhedkar Atul A.

Abstract

Abstract We report here an analytical method for expeditious estimation of efonidipine hydrochloride in tablet formulation with statistical screening and optimization designs using NP-HPTLC. TLC silica gel 60 F254 aluminum plates and ethyl acetate to dichloromethane to triethylamine (3:2:0.5 v/v) were chosen for chromatographic separation of efonidipine hydrochloride. The Rf value for efonidipine hydrochloride turned out to be 0.35 ± 0.25 and quantitative evaluation was done at 251 nm. Plackett-Burman and face-centered central composite design (CCD) were used to obtain the most peak area and well-resolved compact band with an adequate retention factor of efonidipine hydrochloride. Plackett-Burman design at two-level with six independent variables has been employed for screening of prominent factors that affect the responses. The prominent factors have been selected and are optimized through face-centered CCD. The results obtained from face-centered CCD showed that most peak area can be obtained with development distance 8.50 cm and chamber saturation 17 min. Furthermore, the current NP-HPTLC investigation has been validated according to the ICH guidelines for accuracy, precision, sensitivity, robustness, ruggedness, and specificity. The detection and quantification limit was found that 10.41 ng and 31.57 ng, suggesting that the analysis could be accurately and precisely detected the analyte up to nanogram quantity. The current NP-HPTLC investigation is rugged, accurate, and highly sensitive and could be used for routine analysis of efonidipine hydrochloride.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3