Deep learning and machine learning in psychiatry: a survey of current progress in depression detection, diagnosis and treatment

Author:

Squires Matthew,Tao Xiaohui,Elangovan Soman,Gururajan Raj,Zhou Xujuan,Acharya U Rajendra,Li Yuefeng

Abstract

AbstractInformatics paradigms for brain and mental health research have seen significant advances in recent years. These developments can largely be attributed to the emergence of new technologies such as machine learning, deep learning, and artificial intelligence. Data-driven methods have the potential to support mental health care by providing more precise and personalised approaches to detection, diagnosis, and treatment of depression. In particular, precision psychiatry is an emerging field that utilises advanced computational techniques to achieve a more individualised approach to mental health care. This survey provides an overview of the ways in which artificial intelligence is currently being used to support precision psychiatry. Advanced algorithms are being used to support all phases of the treatment cycle. These systems have the potential to identify individuals suffering from mental health conditions, allowing them to receive the care they need and tailor treatments to individual patients who are mostly to benefit. Additionally, unsupervised learning techniques are breaking down existing discrete diagnostic categories and highlighting the vast disease heterogeneity observed within depression diagnoses. Artificial intelligence also provides the opportunity to shift towards evidence-based treatment prescription, moving away from existing methods based on group averages. However, our analysis suggests there are several limitations currently inhibiting the progress of data-driven paradigms in care. Significantly, none of the surveyed articles demonstrate empirically improved patient outcomes over existing methods. Furthermore, greater consideration needs to be given to uncertainty quantification, model validation, constructing interdisciplinary teams of researchers, improved access to diverse data and standardised definitions within the field. Empirical validation of computer algorithms via randomised control trials which demonstrate measurable improvement to patient outcomes are the next step in progressing models to clinical implementation.

Funder

The Cannan Institute Belmont Private Hospital

Publisher

Springer Science and Business Media LLC

Subject

Cognitive Neuroscience,Computer Science Applications,Neurology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3