Early left ventricular microvascular dysfunction in diabetic pigs: a longitudinal quantitative myocardial perfusion CMR study

Author:

Jiang Li,Yan Wei‑Feng,Zhang Lu,Xu Hua‑Yan,Guo Ying‑Kun,Li Zhen-Lin,Liu Ke-Ling,Zeng Ling-Ming,Li Yuan,Yang Zhi-GangORCID

Abstract

Abstract Background Microvascular pathology is one of the main characteristics of diabetic cardiomyopathy; however, the early longitudinal course of diabetic microvascular dysfunction remains uncertain. This study aimed to investigate the early dynamic changes in left ventricular (LV) microvascular function in diabetic pig model using the cardiac magnetic resonance (CMR)-derived quantitative perfusion technique. Methods Twelve pigs with streptozotocin-induced diabetes mellitus (DM) were included in this study, and longitudinal CMR scanning was performed before and 2, 6, 10, and 16 months after diabetic modeling. CMR-derived semiquantitative parameters (upslope, maximal signal intensity, perfusion index, and myocardial perfusion reserve index [MPRI]) and fully quantitative perfusion parameters (myocardial blood flow [MBF] and myocardial perfusion reserve [MPR]) were analyzed to evaluate longitudinal changes in LV myocardial microvascular function. Pearson correlation was used to analyze the relationship between LV structure and function and myocardial perfusion function. Results With the progression of DM duration, the upslope at rest showed a gradually increasing trend (P = 0.029); however, the upslope at stress and MBF did not change significantly (P > 0.05). Regarding perfusion reserve function, both MPRI and MPR showed a decreasing trend with the progression of disease duration (MPRI, P = 0.001; MPR, P = 0.042), with high consistency (r = 0.551, P < 0.001). Furthermore, LV MPR is moderately associated with LV longitudinal strain (r = − 0.353, P = 0.022), LV remodeling index (r = − 0.312, P = 0.033), fasting blood glucose (r = − 0.313, P = 0.043), and HbA1c (r = − 0.309, P = 0.046). Microscopically, pathological results showed that collagen volume fraction increased gradually, whereas no significant decrease in microvascular density was observed with the progression of DM duration. Conclusions Myocardial microvascular reserve function decreased gradually in the early stage of DM, which is related to both structural (but not reduced microvascular density) and functional abnormalities of microvessels, and is associated with increased blood glucose, reduced LV deformation, and myocardial remodeling.

Funder

National Natural Science Foundation of China

1·3·5 project for disciplines of excellence, West China Hospital, Sichuan University

Publisher

Springer Science and Business Media LLC

Subject

Cardiology and Cardiovascular Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3