An improved transmissibility model to detect transgenerational transmitted environmental effects

Author:

David IngridORCID,Ricard Anne

Abstract

Abstract Background Evolutionary studies have reported that non-genetic information can be inherited across generations (epigenetic marks, microbiota, cultural inheritance). Non-genetic information is considered to be a key element to explain the adaptation of wild species to environmental constraints because it lies at the root of the transgenerational transmission of environmental effects. The “transmissibility model” was proposed several years ago to better predict the transmissible potential of each animal by taking these diverse sources of inheritance into account in a global transmissible potential. We propose to improve this model to account for the influence of the environment on the global transmissible potential as well. This extension of the transmissibility model is the “transmissibility model with environment” that considers a covariance between transmissibility samplings of animals sharing the same environment. The null hypothesis of “no transmitted environmental effect” can be tested by comparing the two models using a likelihood ratio test (LRT). Results We performed simulations that mimicked an experimental design consisting of two lines of animals with one exposed to a particular environment at a given generation. This enabled us to evaluate the performances of the transmissibility model with environment so as to detect and quantify transgenerational transmitted environmental effects. The power and the realized type I error of the LRT were compared to those of a T-test comparing the phenotype of the two lines, three generations after the environmental exposure for different sets of parameters. The power of the LRT ranged from 45 to 94%, whereas that of the T-test was always lower than 26%. In addition, the realized type I error of the T-test was 15% and that of the LRT was 5%, as expected. Variances, the covariance between transmissibility samplings, and path coefficients of transmission estimated with the transmissibility model with environment were close to their true values for all sets of parameters. Conclusions The transmissibility model with environment is effective in modeling vertical transmission of environmental effects.

Funder

HORIZON EUROPE Reforming and enhancing the European Research and Innovation system

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Animal Science and Zoology,General Medicine,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3