Sequenced-based GWAS for linear classification traits in Belgian Blue beef cattle reveals new coding variants in genes regulating body size in mammals

Author:

Gualdrón Duarte José Luis,Yuan Can,Gori Ann-Stephan,Moreira Gabriel C. M.,Takeda Haruko,Coppieters Wouter,Charlier Carole,Georges Michel,Druet Tom

Abstract

Abstract Background Cohorts of individuals that have been genotyped and phenotyped for genomic selection programs offer the opportunity to better understand genetic variation associated with complex traits. Here, we performed an association study for traits related to body size and muscular development in intensively selected beef cattle. We leveraged multiple trait information to refine and interpret the significant associations. Results After a multiple-step genotype imputation to the sequence-level for 14,762 Belgian Blue beef (BBB) cows, we performed a genome-wide association study (GWAS) for 11 traits related to muscular development and body size. The 37 identified genome-wide significant quantitative trait loci (QTL) could be condensed in 11 unique QTL regions based on their position. Evidence for pleiotropic effects was found in most of these regions (e.g., correlated association signals, overlap between credible sets (CS) of candidate variants). Thus, we applied a multiple-trait approach to combine information from different traits to refine the CS. In several QTL regions, we identified strong candidate genes known to be related to growth and height in other species such as LCORL-NCAPG or CCND2. For some of these genes, relevant candidate variants were identified in the CS, including three new missense variants in EZH2, PAPPA2 and ADAM12, possibly two additional coding variants in LCORL, and candidate regulatory variants linked to CCND2 and ARMC12. Strikingly, four other QTL regions associated with dimension or muscular development traits were related to five (recessive) deleterious coding variants previously identified. Conclusions Our study further supports that a set of common genes controls body size across mammalian species. In particular, we added new genes to the list of those associated with height in both humans and cattle. We also identified new strong candidate causal variants in some of these genes, strengthening the evidence of their causality. Several breed-specific recessive deleterious variants were identified in our QTL regions, probably as a result of the extreme selection for muscular development in BBB cattle.

Funder

Service Public de Wallonie

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Animal Science and Zoology,General Medicine,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3