Development and accuracy validation of a fat fraction imaging biomarker for sialadenitis in the parotid gland

Author:

Lee Ari,Choi Yoon Joo,Jeon Kug Jin,Han Sang-Sun,Lee Chena

Abstract

Abstract Background The diagnosis of sialadenitis, the most frequent disease of the salivary glands, is challenging when the symptoms are mild. In such cases, biomarkers can be used as definitive diagnostic indicators. Recently, biomarkers have been developed by extracting and analyzing pathological and morphological features from medical imaging. This study aimed to establish a diagnostic reference for sialadenitis based on the quantitative magnetic resonance imaging (MRI) biomarker IDEAL-IQ and assess its accuracy. Methods Patients with sialadenitis (n = 46) and control subjects (n = 90) that underwent MRI were selected. Considering that the IDEAL-IQ value is a sensitive fat fractional marker to the body mass index (BMI), all subjects were also categorized as under-, normal-, and overweight. The fat fraction of parotid gland in the control and sialadenitis groups were obtained using IDEAL-IQ map. The values from the subjects in the control and sialadenitis groups were compared in each BMI category. For comparison, t-tests and receiver operating characteristic (ROC) curve analyses were performed. Results The IDEAL-IQ fat faction of the control and sialadenitis glands were 38.57% and 23.69%, respectively, and the differences were significant. The values were significantly lower in the sialadenitis group (P), regardless of the BMI types. The area under the ROC curve (AUC) was 0.83 (cut-off value: 28.72) in patients with sialadenitis. The AUC for under-, normal-, and overweight individuals were 0.78, 0.81, and 0.92, respectively. Conclusions The fat fraction marker based on the IDEAL-IQ method was useful as an objective indicator for diagnosing sialadenitis. This marker would aid less-experienced clinicians in diagnosing sialadenitis.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3