Facial soft-tissue shape changes after fixed edgewise treatment with premolar extraction in individual artificial-intelligence-classified facial profile patterns

Author:

Tanikawa Chihiro,Tan Tzee Jen,Takada Kenji

Abstract

Abstract Objective To examine the patterns of pretreatment facial soft tissue shape in orthodontic cases with premolar extraction using artificial intelligence (AI) and to investigate the corresponding changes. Methods One hundred and fifty-two patients who underwent orthodontic treatment with premolar extraction were enrolled. Lateral cephalograms were obtained before and after the treatment. For each record, the outlines of the nose-lip-chin profile and corresponding 21 cephalometric variables were extracted. The AI method classified pretreatment records into three subject groups based on the feature variables extracted from the outline. Dentoskeletal and soft tissue facial form changes observed after treatment were compared statistically (P < 0.05) between the groups using ANOVA. Multivariate regression models were used for each group. Results Group 1 (n = 59) was characterized by Class II high-angle retrognathic mandible with an incompetent lip, group 2 (n = 55) by Class I malocclusion with retruded and thin lips, and group 3 (n = 38) by Class I malocclusion with an everted superior lip before treatment. The ratios of anteroposterior soft tissue to hard tissue movements in Group 1 were 56% (r = 0.64) and 83% (r = 0.75) for the superior and inferior lips, respectively, whereas those in Group 2 were 49% (r = 0.78) and 91% (r = 0.80), and 40% (r = 0.54) and 79% (r = 0.70), respectively, in Group 3. Conclusions The modes of facial form changes differed depending on the pre-treatment profile patterns classified by the AI. This indicates that the determination of the pre-treatment profile pattern can help in the selection of soft tissue to hard tissue movement ratios, which helps estimate the post-treatment facial profile with a moderate to high correlation.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3