Long-term haplodeficency of DSPP causes temporomandibular joint osteoarthritis in mice

Author:

Liu Qilin,Zhao Yitong,Shi Haibo,Xiang Danwei,Wu Chunye,Song Lina,Ma Ning,Sun Hongchen

Abstract

Abstract Background Extracellular matrix (ECM) protein malfunction or defect may lead to temporomandibular joint osteoarthritis (TMJ OA). Dentin sialophophoprotein (DSPP) is a mandibular condylar cartilage ECM protein, and its deletion impacted cell proliferation and other extracellular matrix alterations of postnatal condylar cartilage. However, it remains unclear if long-term loss of function of DSPP leads to TMJ OA. The study aimed to test the hypothesis that long-term haploinsufficiency of DSPP causes TMJ OA. Materials and methods To determine whether Dspp+/– mice exhibit TMJ OA but no severe tooth defects, mandibles of wild-type (WT), Dspp+/–, and Dspp homozygous (Dspp−/−) mice were analyzed by Micro-computed tomography (micro-CT). To characterize the progression and possible mechanisms of osteoarthritic degeneration over time in Dspp+/– mice over time, condyles of Dspp+/– and WT mice were analyzed radiologically, histologically, and immunohistochemically. Results Micro-CT and histomorphometric analyses revealed that Dspp+/– and Dspp−/− mice had significantly lower subchondral bone mass, bone volume fraction, bone mineral density, and trabecular thickness compared to WT mice at 12 months. Interestingly, in contrast to Dspp−/− mice which exhibited tooth loss, Dspp+/– mice had minor tooth defects. RNA sequencing data showed that haplodeficency of DSPP affects the biological process of ossification and osteoclast differentiation. Additionally, histological analysis showed that Dspp+/– mice had condylar cartilage fissures, reduced cartilage thickness, decreased articular cell numbers and severe subchondral bone cavities, and with signs that were exaggerated with age. Radiographic data showed an increase in subchondral osteoporosis up to 18 months and osteophyte formation at 21 months. Moreover, Dspp+/– mice showed increased distribution of osteoclasts in the subchondral bone and increased expression of MMP2, IL-6, FN-1, and TLR4 in the mandibular condylar cartilage. Conclusions Dspp+/– mice exhibit TMJ OA in a time-dependent manner, with lesions in the mandibular condyle attributed to hypomineralization of subchondral bone and breakdown of the mandibular condylar cartilage, accompanied by upregulation of inflammatory markers.

Funder

National Natural Science Foundation of China

Jilin University

The Development and Reform Commission of Jilin Province

The Education Department of Jilin province

Department of Finance of Jilin Province

Department of Science and Technology of Jilin Province

Jilin Provincial Department of Health

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3