Effects and mechanisms of Porphyromonas gingivalis outer membrane vesicles induced cardiovascular injury

Author:

Guo Jianbin,Lin Kaijin,Wang Siyi,He Xiaozhen,Huang Zhen,Zheng Minqian

Abstract

Abstract Background The outer membrane vesicles (OMVs) derived from Porphyromonas gingivalis (P. gingivalis) have long been acknowledged for their crucial role in the initiation of periodontitis. However, the implications of P. gingivalis OMVs in the context of cardiovascular disease (CVD) remain incompletely understood. This study aimed to clarify both the impact and the underlying mechanisms through which P. gingivalis OMVs contribute to the propagation of distal cardiovascular inflammation and trauma. Methods In this study, various concentrations (0, 1.25, 2.5, and 4.5 µg/µL) of P. gingivalis OMVs were microinjected into the common cardinal vein of zebrafish larvae at 48 h post-fertilization (hpf) to assess changes in cardiovascular injury and inflammatory response. Zebrafish larvae from both the PBS and the 2.5 µg/µL injection cohorts were harvested at 30 h post-injection (hpi) for transcriptional analysis. Real-time quantitative PCR (RT-qPCR) was employed to evaluate relative gene expression. Results These findings demonstrated that P. gingivalis OMVs induced pericardial enlargement in zebrafish larvae, caused vascular damage, increased neutrophil counts, and activated inflammatory pathways. Transcriptomic analysis further revealed the involvement of the immune response and the extracellular matrix (ECM)-receptor interaction signaling pathway in this process. Conclusion This study illuminated potential mechanisms through which P. gingivalis OMVs contribute to CVD. It accentuated their involvement in distal cardiovascular inflammation and emphasizes the need for further research to comprehensively grasp the connection between periodontitis and CVD.

Funder

Natural Science Foundation of Fujian Province

Science and Technology Innovation Joint Foundation of Fujian Province

Science and Technology Planning Project of Fujian Provincial Health Commission

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3