Identification of Immune Infiltration in Odontogenic Keratocyst by Integrated Bioinformatics Analysis

Author:

Zhong Nian-Nian,Li Su-Ran,Man Qi-Wen,Liu Bing

Abstract

Abstract Background Odontogenic keratocyst (OKC) is a relatively common odontogenic lesion characterized by local invasion in the maxillary and mandibular bones. In the pathological tissue slices of OKC, immune cell infiltrations are frequently observed. However, the immune cell profile and the molecular mechanism for immune cell infiltration of OKC are still unclear. We aimed to explore the immune cell profile of OKC and to explore the potential pathogenesis for immune cell infiltration in OKC. Methods The microarray dataset GSE38494 including OKC and oral mucosa (OM) samples were obtained from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) in OKC were analyzed by R software. The hub genes of OKC were performed by protein-protein interaction (PPI) network. The differential immune cell infiltration and the potential relationship between immune cell infiltration and the hub genes were performed by single-sample gene set enrichment analysis (ssGSEA). The expression of COL1A1 and COL1A3 were confirmed by immunofluorescence and immunohistochemistry in 17 OKC and 8 OM samples. Results We detected a total of 402 differentially expressed genes (DEGs), of which 247 were upregulated and 155 were downregulated. DEGs were mainly involved in collagen-containing extracellular matrix pathways, external encapsulating structure organization, and extracellular structure organization. We identified ten hub genes, namely FN1, COL1A1, COL3A1, COL1A2, BGN, POSTN, SPARC, FBN1, COL5A1, and COL5A2. A significant difference was observed in the abundances of eight types of infiltrating immune cells between the OM and OKC groups. Both COL1A1 and COL3A1 exhibited a significant positive correlation with natural killer T cells and memory B cells. Simultaneously, they demonstrated a significant negative correlation with CD56dim natural killer cells, neutrophils, immature dendritic cells, and activated dendritic cells. Immunohistochemistry analysis showed that COL1A1 (P = 0.0131) and COL1A3 (P < 0.001) were significantly elevated in OKC compared with OM. Conclusions Our findings provide insights into the pathogenesis of OKC and illuminate the immune microenvironment within these lesions. The key genes, including COL1A1 and COL1A3, may significantly impact the biological processes associated with OKC.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities, China

Publisher

Springer Science and Business Media LLC

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3