Face masks and fake masks: the effect of real and superimposed masks on face matching with super-recognisers, typical observers, and algorithms

Author:

Ritchie Kay L.ORCID,Carragher Daniel J.,Davis Josh P.,Read Katie,Jenkins Ryan E.,Noyes Eilidh,Gray Katie L. H.,Hancock Peter J. B.

Abstract

AbstractMask wearing has been required in various settings since the outbreak of COVID-19, and research has shown that identity judgements are difficult for faces wearing masks. To date, however, the majority of experiments on face identification with masked faces tested humans and computer algorithms using images with superimposed masks rather than images of people wearing real face coverings. In three experiments we test humans (control participants and super-recognisers) and algorithms with images showing different types of face coverings. In all experiments we tested matching concealed or unconcealed faces to an unconcealed reference image, and we found a consistent decrease in face matching accuracy with masked compared to unconcealed faces. In Experiment 1, typical human observers were most accurate at face matching with unconcealed images, and poorer for three different types of superimposed mask conditions. In Experiment 2, we tested both typical observers and super-recognisers with superimposed and real face masks, and found that performance was poorer for real compared to superimposed masks. The same pattern was observed in Experiment 3 with algorithms. Our results highlight the importance of testing both humans and algorithms with real face masks, as using only superimposed masks may underestimate their detrimental effect on face identification.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3