Mathematical modelling of oxygenation under veno-venous ECMO configuration using either a femoral or a bicaval drainage

Author:

Charbit JonathanORCID,Courvalin Elie,Dagod Geoffrey,Deras Pauline,Laumon Thomas,Girard Mehdi,Maury Camille,Weber Hugues,Capdevila Xavier

Abstract

Abstract Background The bicaval drainage under veno-venous extracorporeal membrane oxygenation (VV ECMO) was compared in present experimental study to the inferior caval drainage in terms of systemic oxygenation. Method Two mathematical models were built to simulate the inferior vena cava-to-right atrium (IVC → RA) route and the bicaval drainage-to-right atrium return (IVC + SVC → RA) route using the following parameters: cardiac output (QC), IVC flow/QC ratio, venous oxygen saturation, extracorporeal pump flow (QEC), and pulmonary shunt (PULM-Shunt) to obtain pulmonary artery oxygen saturation (SPAO2) and systemic blood oxygen saturation (SaO2). Results With the IVC → RA route, SPAO2 and SaO2 increased linearly with QEC/QC until the threshold of the IVC flow/QC ratio, beyond which the increase in SPAO2 reached a plateau. With the IVC + SVC → RA route, SPAO2 and SaO2 increased linearly with QEC/QC until 100% with QEC/QC = 1. The difference in required QEC/QC between the two routes was all the higher as SaO2 target or PULM-Shunt were high, and occurred all the earlier as PULM-Shunt were high. The required QEC between the two routes could differ from 1.0 L/min (QC = 5 L/min) to 1.5 L/min (QC = 8 L/min) for SaO2 target = 90%. Corresponding differences of QEC for SaO2 target = 94% were 4.7 L/min and 7.9 L/min, respectively. Conclusion Bicaval drainage under ECMO via the IVC + SVC → RA route gave a superior systemic oxygenation performance when both QEC/QC and pulmonary shunt were high. The VV-V ECMO configuration (IVC + SVC → RA route) might be an attractive rescue strategy in case of refractory hypoxaemia under VV ECMO.

Publisher

Springer Science and Business Media LLC

Subject

Critical Care and Intensive Care Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3