Abstract
Abstract
Background
Although biocides at low concentrations have been used to control pests, they can be more harmful than industrial chemicals as humans are directly and frequently exposed to such biocides. Benzalkonium chloride (BAC or BKC) is a non-toxic substance used to control pests. Recently, BAC has been increasingly used as a component in humidifier disinfectants in Korea, raising a serious health concern. Moreover, it poses significant health hazards to workers handling the chemical because of direct exposure. In the present study, we aimed to evaluate the respiratory toxicity of BAC due to its inhalation at exposure concentrations of 0.8 (T1 group), 4 (T2 group) and 20 (T3 group) mg/m3.
Results
In our previous study on the acute inhalational toxicity of BAC, bleeding from the nasal cavity was observed in all the rats after exposure to 50 mg/m3 BAC. Therefore, in this study, 20 mg/m3 was set as the highest exposure concentration, followed by 4 and 0.8 mg/m3 as the medium and low concentrations for 6 h/day and 14 days, respectively. After exposure, recovery periods of 2 and 4 weeks were provided. Additionally, alveolar lavage fluid was analyzed in males of the BAC-exposed groups at the end of exposure and 2 weeks after exposure to evaluate oxidative damage.
In the T3 group exposed to BAC, deep breathing, hoarseness, and nasal discharge were observed along with a decline in feed intake and body weight, and nasal discharge was also observed in the T1 and T2 groups. ROS/RNS, IL-1β, IL-6, and MIP-2 levels decreased in a concentration-dependent manner in the bronchoalveolar lavage fluid. Histopathological examination showed cellular changes in the nasal cavity and the lungs of the TI, T2, and T3 groups.
Conclusions
As a result, it was confirmed that the target organs in the respiratory system were the nasal cavity and the lungs. The adverse effects were evaluated as reversible responses to oxidative damage. Furthermore, the no observed adverse effect level was found to be less than 0.8 mg/m3 and the lowest benchmark dose was 0.0031 mg/m3. Accordingly, the derived no-effect level of BAC was calculated as 0.000062 mg/m3.
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Toxicology,General Medicine
Reference53 articles.
1. Food and Drug Administration. 42912 Federal Register/Vol. 81, No. 126/Thrsday, June 30, 2016/Proposed Rules.
2. European Commission. EU Reference Laboratory for Pesticides Requiring Single Residue Methods: Analysis of Quaternary Ammonium Compounds (QACs) in Fruits and Vegetables using QuEChERS and LC-MS/MS. Version 5, 2016.
3. Lavorgna M, Russo C, D'Abrosca B, Parrella A, Isidori M. Toxicity and genotoxicity of the quaternary ammonium compound benzalkonium chloride (BAC) using Daphnia magna and Ceriodaphnia dubia as model systems. Environ Pollut. 2016;210:34–9.
4. Prince SJ, McLaury HJ, Allen LV, McLaury P. Analysis of Benzalkonium chloride and its homologs: HPLC versus HPCE. J Pharm Biomed Anal. 1999;19:877–82.
5. Bradosol. Archived from the original on 2014-10-12. Retrieved 2013-05-20.
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献