Author:
Siivola Kirsi M.,Burgum Michael J.,Suárez-Merino Blanca,Clift Martin J. D.,Doak Shareen H.,Catalán Julia
Abstract
AbstractThe number of publications in the field of nanogenotoxicology and the amount of genotoxicity data on nanomaterials (NMs) in several databases generated by European Union (EU) funded projects have increased during the last decade. In parallel, large research efforts have contributed to both our understanding of key physico-chemical (PC) parameters regarding NM characterization as well as the limitations of toxicological assays originally designed for soluble chemicals. Hence, it is becoming increasingly clear that not all of these data are reliable or relevant from the regulatory perspective. The aim of this systematic review is to investigate the extent of studies on genotoxicity of NMs that can be considered reliable and relevant by current standards and bring focus to what is needed for a study to be useful from the regulatory point of view. Due to the vast number of studies available, we chose to limit our search to two large groups, which have raised substantial interest in recent years: nanofibers (including nanotubes) and metal-containing nanoparticles. Focusing on peer-reviewed publications, we evaluated the completeness of PC characterization of the tested NMs, documentation of the model system, study design, and results according to the quality assessment approach developed in the EU FP-7 GUIDEnano project. Further, building on recently published recommendations for best practices in nanogenotoxicology research, we created a set of criteria that address assay-specific reliability and relevance for risk assessment purposes. Articles were then reviewed, the qualifying publications discussed, and the most common shortcomings in NM genotoxicity studies highlighted. Moreover, several EU projects under the FP7 and H2020 framework set the aim to collectively feed the information they produced into the eNanoMapper database. As a result, and over the years, the eNanoMapper database has been extended with data of various quality depending on the existing knowledge at the time of entry. These activities are highly relevant since negative results are often not published. Here, we have reviewed the NanoInformaTIX instance under the eNanoMapper database, which hosts data from nine EU initiatives. We evaluated the data quality and the feasibility of use of the data from a regulatory perspective for each experimental entry.
Funder
European Union’s Horizon 2020 research and innovation program
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Toxicology,General Medicine
Reference98 articles.
1. Commission E. Commission Recommendation of 10th June 2022 on the definition of nanomaterial. Available from: https://ec.europa.eu/environment/chemicals/nanotech/pdf/C_2022_3689_1_EN_ACT_part1_v6.pdf.
2. Nanomaterials and genotoxicity—a literature review. Swedish Chemicals Agency; 2016 6 Sep 2020. Report No.: 361 218.
3. Kohl Y, Rundén-Pran E, Mariussen E, Hesler M, El Yamani N, Longhin EM, et al. Genotoxicity of nanomaterials: advanced in vitro models and high throughput methods for human hazard assessment—a review. Nanomaterials. 2020;10(10):1911.
4. Guo X, Chen, T. Progress in genotoxicity evaluation of engineered nanomaterials. In: Soloneski S, Larramendy ML, editors. Nanomaterials—toxicity and risk assessment. 2015. https://doi.org/10.5772/61013.
5. Catalán J, Stockmann-Juvala H, Norppa H. A theoretical approach for a weighted assessment of the mutagenic potential of nanomaterials. Nanotoxicology. 2017;11(8):964–77. https://doi.org/10.1080/17435390.2017.1382601.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献