Efficient computation of absent words in genomic sequences

Author:

Herold Julia,Kurtz Stefan,Giegerich Robert

Abstract

Abstract Background Analysis of sequence composition is a routine task in genome research. Organisms are characterized by their base composition, dinucleotide relative abundance, codon usage, and so on. Unique subsequences are markers of special interest in genome comparison, expression profiling, and genetic engineering. Relative to a random sequence of the same length, unique subsequences are overrepresented in real genomes. Shortest words absent from a genome have been addressed in two recent studies. Results We describe a new algorithm and software for the computation of absent words. It is more efficient than previous algorithms and easier to use. It directly computes unwords without the need to specify a length estimate. Moreover, it avoids the space requirements of index structures such as suffix trees and suffix arrays. Our implementation is available as an open source package. We compute unwords of human and mouse as well as some other organisms, covering a genome size range from 109 down to 105 bp. Conclusion The new algorithm computes absent words for the human genome in 10 minutes on standard hardware, using only 2.5 Mb of space. This enables us to perform this type of analysis not only for the largest genomes available so far, but also for the emerging pan- and meta-genome data.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3