Cell subset prediction for blood genomic studies

Author:

Bolen Christopher R,Uduman Mohamed,Kleinstein Steven H

Abstract

Abstract Background Genome-wide transcriptional profiling of patient blood samples offers a powerful tool to investigate underlying disease mechanisms and personalized treatment decisions. Most studies are based on analysis of total peripheral blood mononuclear cells (PBMCs), a mixed population. In this case, accuracy is inherently limited since cell subset-specific differential expression of gene signatures will be diluted by RNA from other cells. While using specific PBMC subsets for transcriptional profiling would improve our ability to extract knowledge from these data, it is rarely obvious which cell subset(s) will be the most informative. Results We have developed a computational method (Subset Prediction from Enrichment Correlation, SPEC) to predict the cellular source for a pre-defined list of genes (i.e. a gene signature) using only data from total PBMCs. SPEC does not rely on the occurrence of cell subset-specific genes in the signature, but rather takes advantage of correlations with subset-specific genes across a set of samples. Validation using multiple experimental datasets demonstrates that SPEC can accurately identify the source of a gene signature as myeloid or lymphoid, as well as differentiate between B cells, T cells, NK cells and monocytes. Using SPEC, we predict that myeloid cells are the source of the interferon-therapy response gene signature associated with HCV patients who are non-responsive to standard therapy. Conclusions SPEC is a powerful technique for blood genomic studies. It can help identify specific cell subsets that are important for understanding disease and therapy response. SPEC is widely applicable since only gene expression profiles from total PBMCs are required, and thus it can easily be used to mine the massive amount of existing microarray or RNA-seq data.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3