Keratoconus cone location influences ocular biomechanical parameters measured by the Ocular Response Analyzer

Author:

Yuhas Phillip T.,Fortman Maddison M.,Mahmoud Ashraf M.,Roberts Cynthia J.ORCID

Abstract

Abstract Background Keratoconus is characterized by asymmetry in the biomechanical properties of the cornea, with focal weakness in the area of cone formation. We tested the hypothesis that centrally-measured biomechanical parameters differ between corneas with peripheral cones and corneas with central cones. Methods Fifty participants with keratoconus were prospectively recruited. The mean ± standard deviation age was 38 ± 13 years. Axial and tangential corneal topography were analyzed in both eyes, if eligible. Cones in the central 3 mm of the cornea were considered central, and cones outside the central 3 mm were considered peripheral. Each eye was then measured with the Ocular Response Analyzer (ORA) tonometer. T-tests compared differences in ORA-generated waveform parameters between cohorts. Results Seventy-eight eyes were analyzed. According to the axial topography maps, 37 eyes had central cones and 41 eyes had peripheral cones. According to the tangential topography maps, 53 eyes had central cones, and 25 eyes had peripheral cones. For the axial-topography algorithm, wave score (WS) was significantly higher in peripheral cones than central cones (inter-cohort difference = 1.27 ± 1.87). Peripheral cones had a significantly higher area of first peak, p1area (1047 ± 1346), area of second peak, p2area (1130 ± 1478), height of first peak, h1 (102 ± 147), and height of second peak, h2 (102 ± 127), than central cones. Corneal hysteresis (CH), width of the first peak, w1, and width of the second peak, w2, did not significantly differ between cohorts. There were similar results for the tangential-topography algorithm, with a significant difference between the cohorts for p1area (855 ± 1389), p2area (860 ± 1531), h1 (81.7 ± 151), and h2 (92.1 ± 131). Conclusions Cone location affects the biomechanical response parameters measured under central loading of the cornea. The ORA delivers its air puff to the central cornea, so the fact that h1 and h2 and that p1area and p2area were smaller in the central cone cohort than in the peripheral cone cohort suggests that corneas with central cones are softer or more compliant centrally than corneas with peripheral cones, which is consistent with the location of the pathology. This result is evidence that corneal weakening in keratoconus is focal in nature and is consistent with localized disruption of lamellar orientation.

Funder

National Eye Institute

Beta Sigma Kappa

Publisher

Springer Science and Business Media LLC

Subject

Ophthalmology,Health Professions (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3