Prognostic potentials of AI in ophthalmology: systemic disease forecasting via retinal imaging

Author:

Tan Yong Yu,Kang Hyun Goo,Lee Chan Joo,Kim Sung Soo,Park Sungha,Thakur Sahil,Da Soh Zhi,Cho Yunnie,Peng Qingsheng,Lee Kwanghyun,Tham Yih-Chung,Rim Tyler HyungtaekORCID,Cheng Ching-yu

Abstract

Abstract Background Artificial intelligence (AI) that utilizes deep learning (DL) has potential for systemic disease prediction using retinal imaging. The retina’s unique features enable non-invasive visualization of the central nervous system and microvascular circulation, aiding early detection and personalized treatment plans for personalized care. This review explores the value of retinal assessment, AI-based retinal biomarkers, and the importance of longitudinal prediction models in personalized care. Main text This narrative review extensively surveys the literature for relevant studies in PubMed and Google Scholar, investigating the application of AI-based retina biomarkers in predicting systemic diseases using retinal fundus photography. The study settings, sample sizes, utilized AI models and corresponding results were extracted and analysed. This review highlights the substantial potential of AI-based retinal biomarkers in predicting neurodegenerative, cardiovascular, and chronic kidney diseases. Notably, DL algorithms have demonstrated effectiveness in identifying retinal image features associated with cognitive decline, dementia, Parkinson’s disease, and cardiovascular risk factors. Furthermore, longitudinal prediction models leveraging retinal images have shown potential in continuous disease risk assessment and early detection. AI-based retinal biomarkers are non-invasive, accurate, and efficient for disease forecasting and personalized care. Conclusion AI-based retinal imaging hold promise in transforming primary care and systemic disease management. Together, the retina’s unique features and the power of AI enable early detection, risk stratification, and help revolutionizing disease management plans. However, to fully realize the potential of AI in this domain, further research and validation in real-world settings are essential.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3