Transcriptomic analysis of cave, surface, and hybrid samples of the isopod Asellus aquaticus and identification of chromosomal location of candidate genes for cave phenotype evolution

Author:

Lomheim Haeli J.,Reyes Rodas Lizet,Mulla Lubna,Freeborn Layla,Sun Dennis A.,Sanders Sheri A.,Protas Meredith E.

Abstract

Abstract Background Transcriptomic methods can be used to elucidate genes and pathways responsible for phenotypic differences between populations. Asellus aquaticus is a freshwater isopod crustacean with surface- and cave-dwelling ecomorphs that differ greatly in multiple phenotypes including pigmentation and eye size. Multiple genetic resources have been generated for this species, but the genes and pathways responsible for cave-specific characteristics have not yet been identified. Our goal was to generate transcriptomic resources in tandem with taking advantage of the species’ ability to interbreed and generate hybrid individuals. Results We generated transcriptomes of the Rakov Škocjan surface population and the Rak Channel of Planina Cave population that combined Illumina short-read assemblies and PacBio Iso-seq long-read sequences. We investigated differential expression at two different embryonic time points as well as allele-specific expression of F1 hybrids between cave and surface individuals. RNAseq of F2 hybrids, as well as genotyping of a backcross, allowed for positional information of multiple candidate genes from the differential expression and allele-specific analyses. Conclusions As expected, genes involved in phototransduction and ommochrome synthesis were under-expressed in the cave samples as compared to the surface samples. Allele-specific expression analysis of F1 hybrids identified genes with cave-biased (cave allele has higher mRNA levels than the surface allele) and surface-biased expression (surface allele has higher mRNA levels than the cave allele). RNAseq of F2 hybrids allowed for multiple genes to be placed to previously mapped genomic regions responsible for eye and pigmentation phenotypes. In the future, these transcriptomic resources will guide prioritization of candidates for functional analysis.

Funder

National Science Foundation

National Eye Institute

Publisher

Springer Science and Business Media LLC

Subject

Developmental Biology,Genetics,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3