3D fascicular reconstruction of median and ulnar nerve: initial experience and comparison between high-resolution ultrasound and MR microscopy

Author:

Pušnik Luka,Lechner Lisa,Serša Igor,Cvetko Erika,Haas Philipp,Jengojan Suren ArmeniORCID,Snoj Žiga

Abstract

Abstract Background The complex anatomy of peripheral nerves has been traditionally investigated through histological microsections, with inherent limitations. We aimed to compare three-dimensional (3D) reconstructions of median and ulnar nerves acquired with tomographic high-resolution ultrasound (HRUS) and magnetic resonance microscopy (MRM) and assess their capacity to depict intraneural anatomy. Methods Three fresh-frozen human upper extremity specimens were prepared for HRUS imaging by submersion in a water medium. The median and ulnar nerves were pierced with sutures to improve orientation during imaging. Peripheral nerve 3D HRUS scanning was performed on the mid-upper arm using a broadband linear probe (10–22 MHz) equipped with a tomographic 3D HRUS system. Following excision, nerves were cut into 16-mm segments and loaded into the MRM probe of a 9.4-T system (scanning time 27 h). Fascicle and nerve counting was performed to estimate the nerve volume, fascicle volume, fascicle count, and number of interfascicular connections. HRUS reconstructions employed artificial intelligence-based algorithms, while MRM reconstructions were generated using an open-source imaging software 3D slicer. Results Compared to MRM, 3D HRUS underestimated nerve volume by up to 22% and volume of all fascicles by up to 11%. Additionally, 3D HRUS depicted 6–60% fewer fascicles compared to MRM and visualized approximately half as many interfascicular connections. Conclusion MRM demonstrated a more detailed fascicular depiction compared to 3D HRUS, with a greater capacity for visualizing smaller fascicles. While 3D HRUS reconstructions can offer supplementary data in peripheral nerve assessment, their limitations in depicting interfascicular connections and small fascicles within clusters necessitate cautious interpretation. Clinical relevance statement Although 3D HRUS reconstructions can offer supplementary data in peripheral nerve assessment, even in intraoperative settings, their limitations in depicting interfascicular branches and small fascicles within clusters require cautious interpretation. Key Points 3D HRUS was limited in visualizing nerve interfascicular connections. MRM demonstrated better nerve fascicle depiction than 3D HRUS. MRM depicted more nerve interfascicular connections than 3D HRUS. Graphical Abstract

Funder

Javna Agencija za Raziskovalno Dejavnost RS

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3