Functional network connectivity patterns predicting the efficacy of repetitive transcranial magnetic stimulation in the spectrum of Alzheimer’s disease

Author:

Chen Haifeng,Li Mengyun,Qin Zhiming,Yang Zhiyuan,Lv Tingyu,Yao Weina,Hu Zheqi,Qin Ruomeng,Zhao Hui,Bai Feng

Abstract

Abstract Background Neuro-navigated repetitive transcranial magnetic stimulation (rTMS) is potentially effective in enhancing cognitive performance in the spectrum of Alzheimer’s disease (AD). We explored the effect of rTMS-induced network reorganization and its predictive value for individual treatment response. Methods Sixty-two amnestic mild cognitive impairment (aMCI) and AD patients were recruited. These subjects were assigned to multimodal magnetic resonance imaging scanning before and after a 4-week stimulation. Then, we investigated the neural mechanism underlying rTMS treatment based on static functional network connectivity (sFNC) and dynamic functional network connectivity (dFNC) analyses. Finally, the support vector regression was used to predict the individual rTMS treatment response through these functional features at baseline. Results We found that rTMS at the left angular gyrus significantly induced cognitive improvement in multiple cognitive domains. Participants after rTMS treatment exhibited significantly the increased sFNC between the right frontoparietal network (rFPN) and left frontoparietal network (lFPN) and decreased sFNC between posterior visual network and medial visual network. We revealed remarkable dFNC characteristics of brain connectivity, which was increased mainly in higher-order cognitive networks and decreased in primary networks or between primary networks and higher-order cognitive networks. dFNC characteristics in state 1 and state 4 could further predict individual higher memory improvement after rTMS treatment (state 1, R = 0.58; state 4, R = 0.54). Conclusion Our findings highlight that neuro-navigated rTMS could suppress primary network connections to compensate for higher-order cognitive networks. Crucially, dynamic regulation of brain networks at baseline may serve as an individualized predictor of rTMS treatment response. Relevance statement Dynamic reorganization of brain networks could predict the efficacy of repetitive transcranial magnetic stimulation in the spectrum of Alzheimer’s disease. Key points • rTMS at the left angular gyrus could induce cognitive improvement. • rTMS could suppress primary network connections to compensate for higher-order networks. • Dynamic reorganization of brain networks could predict individual treatment response to rTMS. Graphical Abstract

Funder

National Natural Science Foundation of China

Clinical Trials from the Affiliated Drum Tower Hospital, Medical School of Nanjing University

National Key Research and Development Program of China

Jiangsu Province Senior Health Project

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3