Author:
Alhuthali Hayaa M.,Ataya Eman F.,Alsalmi Alaa,Elmissbah Triq E,Alsharif Khalaf F,Alzahrani Hind A.,Alsaiari Ahad Amer,Allahyani Mamdouh,Gharib Amal F.,Qanash Husam,Elmasry Heba M.,Hassanein Doha Elsayed
Abstract
Abstract
Background
Alpha-thalassemia (α-thalassemia) is one of the most common monogenic diseases in Saudi Arabia and is associated with significant morbidity. Premarital testing programs in Saudi Arabia reduce the burden of hemoglobinopathy disorders, and ongoing monitoring is required. We aimed to explore the molecular nature of α-globin genes and identify the most common genotypes and regions with a high risk of α-thalassemia in Saudi Arabia.
Methods
This retrospective study was conducted between January 2021 and December 2022. Six hundred twenty-five samples from patients with microcytic hypochromic anemia in Saudi Arabia were analyzed using reverse dot blot hybridization (RDBH)-based multiplex-PCR, which screens for the known 21 mutations of α-globin genes.
Results
Seven mutations in the α-globin gene were identified in 88.96% (556) patients. The most frequent abnormality of a-globin genes was −α3.7 (62.3%), followed by α2IVS1(−5nt) (20.7%) and α2 polyA-1 (α2T.Saudi) (14.1%). Interestingly, α2 polyA-2 (α2T.Turkish) was identified in Saudi and presented with −MED, causing Haemoglobin H disease. The incidence of α-thalassemia in Saudi Arabia’s cities showed significant differences (P = 0.004). Jeddah City had the highest percentage of cases (25%), followed by Makkah (23%), Taif (13.3%), and Al-Ahassa (12.4%).
Conclusion
The study provides current knowledge about the molecular nature of α- thalassemia, highlights the common genotypes that could contribute to disease occurrence in the Saudi population, and sheds light on Saudi regions with a high incidence. It also recommends further studies in a larger population and with differently composed molecular assays to verify these findings.
Publisher
Springer Science and Business Media LLC
Reference48 articles.
1. Weatherall DJ. The challenge of haemoglobinopathies in resource-poor countries. Br J Haematol. 2011;154(6):736–44.
2. Huang H, Chen M, Chen L, Zhang M, Wang Y, Lin N, et al. Prenatal diagnosis of Thalassemia in 695 pedigrees from southeastern China: a 10-year follow‐up study. J Clin Lab Anal. 2021;35(10):e23982.
3. Alsaeed ES, Farhat GN, Assiri AM, Memish Z, Ahmed EM, Saeedi MY, et al. Distribution of hemoglobinopathy disorders in Saudi Arabia based on data from the premarital screening and genetic counseling program, 2011–2015. J Epidemiol Glob Health. 2018;7(Suppl 1):41–S7.
4. Memish ZA, Owaidah TM, Saeedi MY. Marked regional variations in the prevalence of sickle cell Disease and beta-thalassemia in Saudi Arabia: findings from the premarital screening and genetic counseling program. J Epidemiol Glob Health. 2011;1(1):61–8.
5. Olwi DI, Merdad LA, Ramadan EK. Thalassemia: a prevalent Disease yet unknown term among college students in Saudi Arabia. J Community Genet. 2018;9(3):277–82.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献