Machine learning approaches to identify systemic lupus erythematosus in anti-nuclear antibody-positive patients using genomic data and electronic health records

Author:

Chung Chih-Wei,Chou Seng-Cho,Hsiao Tzu-Hung,Zhang Grace Joyce,Chung Yu-Fang,Chen Yi-Ming

Abstract

Abstract Background Although the 2019 EULAR/ACR classification criteria for systemic lupus erythematosus (SLE) has required at least a positive anti-nuclear antibody (ANA) titer (≥ 1:80), it remains challenging for clinicians to identify patients with SLE. This study aimed to develop a machine learning (ML) approach to assist in the detection of SLE patients using genomic data and electronic health records. Methods Participants with a positive ANA (≥ 1:80) were enrolled from the Taiwan Precision Medicine Initiative cohort. The Taiwan Biobank version 2 array was used to detect single nucleotide polymorphism (SNP) data. Six ML models, Logistic Regression, Random Forest (RF), Support Vector Machine, Light Gradient Boosting Machine, Gradient Tree Boosting, and Extreme Gradient Boosting (XGB), were used to identify SLE patients. The importance of the clinical and genetic features was determined by Shapley Additive Explanation (SHAP) values. A logistic regression model was applied to identify genetic variations associated with SLE in the subset of patients with an ANA equal to or exceeding 1:640. Results A total of 946 SLE and 1,892 non-SLE controls were included in this analysis. Among the six ML models, RF and XGB demonstrated superior performance in the differentiation of SLE from non-SLE. The leading features in the SHAP diagram were anti-double strand DNA antibodies, ANA titers, AC4 ANA pattern, polygenic risk scores, complement levels, and SNPs. Additionally, in the subgroup with a high ANA titer (≥ 1:640), six SNPs positively associated with SLE and five SNPs negatively correlated with SLE were discovered. Conclusions ML approaches offer the potential to assist in diagnosing SLE and uncovering novel SNPs in a group of patients with autoimmunity.

Funder

Academia Sinica

National Science and Technology Council

Taichung Veterans General Hospital

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Genetics,Molecular Biology,Biochemistry

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3