Diagnosis of thyroid nodules for ultrasonographic characteristics indicative of malignancy using random forest

Author:

Chen Dan,Hu Jun,Zhu Mei,Tang Niansheng,Yang Yang,Feng Yuran

Abstract

Abstract Background Various combinations of ultrasonographic (US) characteristics are increasingly utilized to classify thyroid nodules. But they lack theories, and heavily depend on radiologists’ experience, and cannot correctly classify thyroid nodules. Hence, our main purpose of this manuscript is to select the US characteristics significantly associated with malignancy and to develop an efficient scoring system for facilitating ultrasonic clinicians to correctly identify thyroid malignancy. Methods A logistic regression (LR) model is utilized to identify the potential thyroid malignancy, and the least absolute shrinkage and selection operator (LASSO) method is adopted to simultaneously select US characteristics significantly associated with malignancy and estimate parameters in LR model. Based on the selected US characteristics, we calculate the probability for each of thyroid nodules via random forest (RF) and extreme learning machine (ELM), and develop a scoring system to classify thyroid nodules. For comparison, we also consider eight state-of-the-art methods such as support vector machine (SVM), neural network (NET), etc. The area under the receiver operating characteristic curve (AUC) is employed to measure the accuracy of various classifiers. Results The US characteristics: nodule size, AP/T≥1, solid component, micro-calcifications, hackly border, hypoechogenicity, presence of halo, unclear border, irregular margin, and central vascularity are selected as the significant predictors associated with thyroid malignancy via the LASSO LR (LLR). Using the developed scoring system, thyroid nodules are classified into the following four categories: benign, low suspicion, intermediate suspicion, and high suspicion, whose rates of malignancy correctly identified for RF (ELM) method on the testing dataset are 0.0% (4.3%), 14.3% (50.0%), 58.1% (59.1%) and 96.1% (97.7%), respectively. Conclusion LLR together with RF performs better than other methods in identifying malignancy, especially for abnormal nodules, in terms of risk scores. The developed scoring system can well predict the risk of malignancy and guide medical doctors to make management decisions for reducing the number of unnecessary biopsies for benign nodules.

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Genetics,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3