A horizontal gene transfer at the origin of phenylpropanoid metabolism: a key adaptation of plants to land

Author:

Emiliani Giovanni,Fondi Marco,Fani Renato,Gribaldo Simonetta

Abstract

Abstract Background The pioneering ancestor of land plants that conquered terrestrial habitats around 500 million years ago had to face dramatic stresses including UV radiation, desiccation, and microbial attack. This drove a number of adaptations, among which the emergence of the phenylpropanoid pathway was crucial, leading to essential compounds such as flavonoids and lignin. However, the origin of this specific land plant secondary metabolism has not been clarified. Results We have performed an extensive analysis of the taxonomic distribution and phylogeny of Phenylalanine Ammonia Lyase (PAL), which catalyses the first and essential step of the general phenylpropanoid pathway, leading from phenylalanine to p-Coumaric acid and p-Coumaroyl-CoA, the entry points of the flavonoids and lignin routes. We obtained robust evidence that the ancestor of land plants acquired a PAL via horizontal gene transfer (HGT) during symbioses with soil bacteria and fungi that are known to have established very early during the first steps of land colonization. This horizontally acquired PAL represented then the basis for further development of the phenylpropanoid pathway and plant radiation on terrestrial environments. Conclusion Our results highlight a possible crucial role of HGT from soil bacteria in the path leading to land colonization by plants and their subsequent evolution. The few functional characterizations of sediment/soil bacterial PAL (production of secondary metabolites with powerful antimicrobial activity or production of pigments) suggest that the initial advantage of this horizontally acquired PAL in the ancestor of land plants might have been either defense against an already developed microbial community and/or protection against UV. Reviewers This article was reviewed by Purificación López-García, Janet Siefert, and Eugene Koonin.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation,Ecology, Evolution, Behavior and Systematics,Immunology

Cited by 140 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3