Development and application of MIPAR™: a novel software package for two- and three-dimensional microstructural characterization

Author:

Sosa John M,Huber Daniel E,Welk Brian,Fraser Hamish L

Abstract

AbstractThree-dimensional microscopy has become an increasingly popular materials characterization technique. This has resulted in a standardized processing scheme for most datasets. Such a scheme has motivated the development of a robust software package capable of performing each stage of post-acquisition processing and analysis. This software has been termed Materials Image Processing and Automated Reconstruction (MIPAR™). Developed in MATLAB™, but deployable as a standalone cross-platform executable, MIPAR™ leverages the power of MATLAB’s matrix processing algorithms and offers a comprehensive graphical software solution to the multitude of 3D characterization problems. MIPAR™ consists of five modules, three of which (Image Processor, Batch Processor, and 3D Toolbox) are required for full 3D characterization. Each module is dedicated to different stages of 3D data processing: alignment, pre-processing, segmentation, visualization, and quantification.With regard to pre-processing, i.e., the raw-intensity-enhancement steps that aid subsequent segmentation, MIPAR’s Image Processor module includes a host of contrast enhancement and noise reduction filters, one of which offers a unique solution to ion-milling-artifact reduction. In the area of segmentation, a methodology has been developed for the optimization of segmentation algorithm parameters, and graphically integrated into the Image Processor. Additionally, a 3D data structure and complementary user interface has been developed which permits the binary segmentation of complex, multi-phase microstructures. This structure has also permitted the integration of 3D EBSD data processing and visualization tools, along with support of additional algorithms for the fusion of multi-modal datasets. Finally, in the important field of quantification, MIPAR™ offers several direct 3D quantification tools across the global, feature-by-feature, and localized classes.

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,General Materials Science

Reference26 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3