Novel lipidomes profile and clinical phenotype identified in pneumoconiosis patients

Author:

Shi Liyong,Dai Xiaofang,Yan Furong,Lin Yujun,Lin Lianshun,Zhang Yongquan,Zeng Yiming,Chen XiaoyangORCID

Abstract

Abstract Background Pneumoconiosis is a group of occupational lung diseases caused by the inhalation of mineral dust in the lungs, leading to lung dysfunction. Patients with pneumoconiosis are usually accompanied by weight loss, which suggests a lipid metabolism disorder. Recent progress in lipidomics uncovered detailed lipid profiles that play important roles in respiratory diseases, such as asthma, lung cancer and lung injury. The purpose of this study was to shed light on the different expression of lipidome between pneumoconiosis and healthy, hoping to bring new ideas for the diagnosis and treatment of pneumoconiosis. Methodology This non-matching case–control study was performed among 96 subjects (48 outpatients with male pneumoconiosis and 48 healthy volunteers), data of clinical phenotypes were recorded, and plasma biochemistry (lipidomic profiles) was tested for both pneumoconiosis patients and healthy controls. A total of 426 species in 11 lipid classes were analyzed by high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (HPLC-QqQ-MS) for the cases and controls. We also analyzed the correlation of lipid profiles with clinical phenomes from pneumoconiosis patients by expression quantitative trait locus (eQTL) model to evaluate trans-nodules between lipidomic profiles and clinical phenomes. All visually re-checked data were analyzed using appropriate statistical tools (t-test or one-way ANOVA test) on SPSS. Results Compared with healthy people, 26 significantly increased (> 1.5-fold) and 30 decreased lipid elements (< 2/threefold) in patients with pneumoconiosis were identified (P values all < 0.05). The majority of those elevated lipid elements were phosphatidylethanolamines (PEs), and the minority were free fatty acids (FFAs), while phosphatidylcholines (PCs) and lysophosphatidylcholines (lysoPCs) declined in pneumoconiosis. Clinical trans-omics analyses demonstrated that phenomes in pneumoconiosis connections with multiple lipids, which showed that pH, lung function, mediastinal lymph node calcification, and complication were highly correlated with lipid elements. Furthermore, up-regulated PE was corresponded to pH, smoking history and mediastinal lymph node calcification. PC was corresponded to dust exposure history, BMI and mediastinal lymph node calcification. Conclusion We found altered lipid panels between male pneumoconiosis patients and healthy people by qualitatively and quantitatively measured plasma lipidomic profiles. The trans-omic analysis between clinical phenomes and lipidomes might have the potential to uncover the heterogeneity of lipid metabolism of pneumoconiosis patients and to screen out clinically significant phenome-based lipid panels.

Funder

National Key Research and Development Program of China

Quanzhou City Science & Technology Program of China

Bethune Medical Science Research Foundation

Startup Fund for Scientific Research, Fujian Medical University

Talent Training Project of Fujian Respiratory Medical Center

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3