Proteins from shrews’ venom glands play a role in gland functioning and venom production

Author:

Kowalski KrzysztofORCID,Marciniak PawełORCID,Nekaris K. Anne-IsolaORCID,Rychlik LeszekORCID

Abstract

AbstractVenom production has evolved independently many times in the animal kingdom, although it is rare among mammals. Venomous shrews produce venom in their submandibular salivary glands and use it for food acquisition. Only a few toxins have been identified in shrew venoms thus far, and their modes of action require investigation. The biological and molecular processes relating to venom production and gland functioning also remain unknown. To address this gap, we investigated protein content in extracts from venom glands of two shrew species, Neomys fodiens and Sorex araneus, and interpreted their biological functions. Applying a proteomic approach coupled with Gene Ontology enrichment analysis, we identified 313 and 187 putative proteins in venom glands of N. fodiens and S. araneus, respectively. A search of the UniProt database revealed that most of the proteins found in both shrew species were involved in metabolic processes and stress response, while GO enrichment analysis revealed more stress-related proteins in the glands of S. araneus. Molecules that regulate molecule synthesis, cell cycles, and cell divisions are necessary to enable venom regeneration and ensure its effectiveness in predation and food hoarding. The presence of proteins involved in stress response may be the result of shrews’ high metabolic rate and the costs of venom replenishment. Some proteins are likely to promote toxin spreading during envenomation and, due to their proteolytic action, reinforce venom toxicity. Finally, finding numerous proteins involved in immune response suggests a potential role of shrew venom gland secretions in protection against pathogens. These findings open up new perspectives for studying biological functions of molecules from shrew venom glands and extend our knowledge on the functioning of eulipotyphlan venom systems. Because the majority of existing and putative venomous mammals use oral venom systems to inject venom into target species, the methods presented here provide a promising avenue for confirming or discovering new taxa of venomous mammals.

Funder

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

Reference106 articles.

1. Bücherl W, Buckley EE, Deulofeu V. Venomous animals and their venoms, vol. I. Venomous vertebrates. London: Academic; 1968.

2. Zhang Y. Why do we study animal toxins? Zool Res. 2015;36(4):183–222.

3. Kowalski K, Rychlik L. Venom use in eulipotyphlans: an evolutionary and ecological approach. Toxins. 2021;13(3):231.

4. Dufton MJ. Venomous mammals. Pharmacol Ther. 1992;53(2):199–215.

5. Ligabue-Braun R, Verli H, Carlini CR. Venomous mammals: a review. Toxicon. 2012;59(7–8):680–95.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3