Direct electrophoretic microRNA preparation from clinical samples using nanofilter membrane

Author:

Lee Kidan,Kang Jae-Hyun,Kim Hyun-Mi,Ahn Junhyoung,Lim Hyungjun,Lee JaeJong,Jeon Wan-Jin,Lee Jae-Hoon,Kim Ki-BumORCID

Abstract

AbstractA method to directly collect negatively charged nucleic acids, such as DNA and RNA, in the biosamples simply by applying an electric field in between the sample and collection buffer separated by the nanofilter membrane is proposed. The nanofilter membrane was made of low-stress silicon nitride with a thickness of 100 nm, and multiple pores were perforated in a highly arranged pattern using nanoimprint technology with a pore size of 200 nm and a pore density of 7.22 × 108/cm2. The electrophoretic transport of hsa-mir-93-5p across the membrane was confirmed in pure microRNA (miRNA) mimic solution using quantitative reverse transcription-polymerase chain reactions (qRT-PCR). Consistency of the collected miRNA quantity, stability of the system during the experiment, and yield and purity of the prepared sample were discussed in detail to validate the effectiveness of the electrical protocol. Finally, in order to check the applicability of this method to clinical samples, liquid biopsy process was demonstrated by evaluating the miRNA levels in sera of hepatocellular carcinoma patients and healthy controls. This efficient system proposed a simple, physical idea in preparation of nucleic acid from biosamples, and demonstrated its compatibility to biological downstream applications such as qRT-PCR as the conventional nucleic acid extraction protocols.

Funder

Ministry of Science and ICT

Publisher

Springer Science and Business Media LLC

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3