Applying spectral fractal dimension index to predict the SPAD value of rice leaves under bacterial blight disease stress

Author:

Cao YiFei,Xu Huanliang,Song Jin,Yang Yao,Hu Xiaohui,Wiyao Korohou Tchalla,Zhai ZhaoyuORCID

Abstract

Abstract Background The chlorophyll content is a vital indicator for reflecting the photosynthesis ability of plants and it plays a significant role in monitoring the general health of plants. Since the chlorophyll content and the soil–plant analysis development (SPAD) value are positively correlated, it is feasible to predict the SPAD value by calculating the vegetation indices (VIs) through hyperspectral images, thereby evaluating the severity of plant diseases. However, current indices simply adopt few wavelengths of the hyperspectral information, which may decrease the prediction accuracy. Besides, few researches explored the applicability of VIs over rice under the bacterial blight disease stress. Methods In this study, the SPAD value was predicted by calculating the spectral fractal dimension index (SFDI) from a hyperspectral curve (420 to 950 nm). The correlation between the SPAD value and hyperspectral information was further analyzed for determining the sensitive bands that correspond to different disease levels. In addition, a SPAD prediction model was built upon the combination of selected indices and four machine learning methods. Results The results suggested that the SPAD value of rice leaves under different disease levels are sensitive to different wavelengths. Compared with current VIs, a stronger positive correlation was detected between the SPAD value and the SFDI, reaching an average correlation coefficient of 0.8263. For the prediction model, the one built with support vector regression and SFDI achieved the best performance, reaching R2, RMSE, and RE at 0.8752, 3.7715, and 7.8614%, respectively. Conclusions This work provides an in-depth insight for accurately and robustly predicting the SPAD value of rice leaves under the bacterial blight disease stress, and the SFDI is of great significance for monitoring the chlorophyll content in large-scale fields non-destructively.

Funder

Startup Foundation of New Professor at Nanjing Agricultural University

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3