Author:
Batchu Sudha Rani,Quinete Natalia,Panditi Venkata R,Gardinali Piero R
Abstract
Abstract
Background
Sucralose has gained popularity as a low calorie artificial sweetener worldwide. Due to its high stability and persistence, sucralose has shown widespread occurrence in environmental waters, at concentrations that could reach up to several μg/L. Previous studies have used time consuming sample preparation methods (offline solid phase extraction/derivatization) or methods with rather high detection limits (direct injection) for sucralose analysis. This study described a faster and sensitive analytical method for the determination of sucralose in environmental samples.
Results
An online SPE-LC–MS/MS method was developed, being capable to quantify sucralose in 12 minutes using only 10 mL of sample, with method detection limits (MDLs) of 4.5 ng/L, 8.5 ng/L and 45 ng/L for deionized water, drinking and reclaimed waters (1:10 diluted with deionized water), respectively. Sucralose was detected in 82% of the reclaimed water samples at concentrations reaching up to 18 μg/L. The monthly average for a period of one year was 9.1 ± 2.9 μg/L. The calculated mass loads per capita of sucralose discharged through WWTP effluents based on the concentrations detected in wastewaters in the U. S. is 5.0 mg/day/person. As expected, the concentrations observed in drinking water were much lower but still relevant reaching as high as 465 ng/L. In order to evaluate the stability of sucralose, photodegradation experiments were performed in natural waters. Significant photodegradation of sucralose was observed only in freshwater at 254 nm. Minimal degradation (<20%) was observed for all matrices under more natural conditions (350 nm or solar simulator). The only photolysis product of sucralose identified by high resolution mass spectrometry was a de-chlorinated molecule at m/z 362.0535, with molecular formula C12H20Cl2O8.
Conclusions
Online SPE LC-APCI/MS/MS developed in the study was applied to more than 100 environmental samples. Sucralose was frequently detected (>80%) indicating that the conventional treatment process employed in the sewage treatment plants is not efficient for its removal. Detection of sucralose in drinking waters suggests potential contamination of surface and ground waters sources with anthropogenic wastewater streams. Its high resistance to photodegradation, minimal sorption and high solubility indicate that sucralose could be a good tracer of anthropogenic wastewater intrusion into the environment.
Publisher
Springer Science and Business Media LLC
Reference54 articles.
1. Brorström–Lundén E, Svenson A, Viktor T, Woldegiorgis A, Remberger M, Kaj L, Dye C, Bjerke A, Schlabach M: Measurements of Sucralose in the Swedish Screening Program 2007-PART 1; Sucralose in surface waters and STP samples IVL B1769. 2008, Stockholm: IVL Swedish Environmental Research Institute Ltd
2. Mead RN, Morgan JB, Avery GB, Kieber RJ, Kirk AM, Skrabal SA, Willey JD: Occurrence of the artificial sweetener sucralose in coastal and marine waters of the United States. Mar Chem. 2009, 116: 13-17. 10.1016/j.marchem.2009.09.005.
3. Loos R, Gawlik BM, Boettcher K, Locoro G, Contini S, Bidoglio G: Sucralose screening in European surface waters using a solid-phase extraction-liquid chromatography-triple quadrupole mass spectrometry method. J Chromatogr A. 2009, 1216: 1126-1131. 10.1016/j.chroma.2008.12.048.
4. Scheurer M, Brauch H-J, Lange FT: Analysis and occurrence of seven artificial sweeteners in German waste water and surface water and in soil aquifer treatment (SAT). Anal Bioanal Chem. 2009, 394: 1585-1594. 10.1007/s00216-009-2881-y.
5. Ferrer I, Thurman EM: Analysis of sucralose and other sweeteners in water and beverage samples by liquid chromatography/time-of-flight mass spectrometry. J Chromatogr A. 2010, 1217: 4127-4134. 10.1016/j.chroma.2010.02.020.
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献