Tamoxifen induces radioresistance through NRF2-mediated metabolic reprogramming in breast cancer

Author:

Naumann F. V.,Sweep F. C. G. J.,Adema G. J.,Peeters W. J. M.,Martens J. W. M.,Bussink J.,Span P. N.

Abstract

Abstract Background Recently, we reported that tamoxifen-resistant (TAM-R) breast cancer cells are cross-resistant to irradiation. Here, we investigated the mechanisms associated with tamoxifen-induced radioresistance, aiming to prevent or reverse resistance and improve breast cancer treatment. Methods Wild-type ERα-positive MCF7 and ERα-negative MDA-MB-231 breast cancer cells and their TAM-R counterparts were analyzed for cellular metabolism using the Seahorse metabolic analyzer. Real-time ROS production, toxicity, and antioxidant capacity in response to H2O2, tamoxifen, and irradiation were determined. Tumor material from 28 breast cancer patients before and after short-term presurgical tamoxifen (ClinicalTrials.gov Identifier: NCT00738777, August 19, 2008) and cellular material was analyzed for NRF2 gene expression and immunohistochemistry. Re-sensitization of TAM-R cells to irradiation was established using pharmacological inhibition. Results TAM-R cells exhibited decreased oxygen consumption and increased glycolysis, suggesting mitochondrial dysfunction. However, this did not explain radioresistance, as cells without mitochondria (Rho-0) were actually more radiosensitive. Real-time measurement of ROS after tamoxifen and H2O2 exposure indicated lower ROS levels and toxicity in TAM-R cells. Consistently, higher antioxidant levels were found in TAM-R cells, providing protection from irradiation-induced ROS. NRF2, a main activator of the antioxidant response, was increased in TAM-R cells and in tumor tissue of patients treated with short-term presurgical tamoxifen. NRF2 inhibition re-sensitized TAM-R cells to irradiation. Conclusion Mechanisms underlying tamoxifen-induced radioresistance are linked to cellular adaptations to persistently increased ROS levels, leading to cells with chronically upregulated antioxidant capacity and glycolysis. Pharmacological inhibition of antioxidant responses re-sensitizes breast cancer cells to irradiation.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3