Evaluation of an alternative heterotopic transplantation model for ovarian tissue to test pharmaceuticals improvements for fertility restoration

Author:

Terren Carmen,Bindels Jules,Nisolle Michelle,Noël Agnès,Munaut Carine

Abstract

Abstract Background Ovarian tissue cryopreservation and transplantation (OTCTP) is currently the main option available to preserve fertility in prepubertal patients undergoing aggressive cancer therapy treatments. However, a major limitation of OTCTP is follicle loss after transplantation. The mouse is a model of choice for studying ovarian function and follicle development after ovarian tissue grafting in vivo. In these mouse models, ovarian tissue or ovaries can be transplanted to different sites. Our aim was to evaluate a new alternative to heterotopic transplantation models that could be useful to test pharmaceutical improvement for ovarian grafts after OTCTP. Methods Slow frozen murine whole ovaries were transplanted into the mouse ears (between the external ear skin layer and the cartilage). Ovarian transplants were recovered after 3, 14 or 21 days. Grafts were analyzed by immunohistochemistry and follicle density analyses were performed. Results An increase of ovarian vascularization (CD31 and Dextran-FITC positive staining), as well as cellular proliferation (Ki67 staining) were observed 3 weeks after transplantation in comparison to 3 days. Fibrosis density, evaluated after Van Gieson staining, decreased 3 weeks after transplantation. Furthermore, transplantation of cryopreserved ovaries into ovariectomized mice favored follicle activation compared to transplantation into non-ovariectomized mice. Conclusion The present study indicates that surgical tissue insertion in the highly vascularized murine ear is an effective model for ovarian grafting. This model could be helpful in research to test pharmaceutical strategies to improve the function and survival of cryopreserved and transplanted ovarian tissue.

Funder

Fonds De La Recherche Scientifique - FNRS

Fonds spéciaux de la Recherche

Fondation Léon Fredericq

Foundation against Cancer

Publisher

Springer Science and Business Media LLC

Subject

Developmental Biology,Endocrinology,Reproductive Medicine,Obstetrics and Gynecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3