Down-regulation of PBK inhibits proliferation of human endometrial stromal cells in thin endometrium

Author:

Zhu Qi,Yao Simin,Dong Yishan,Liu Dan,Wang Huiyan,Jiang Peipei,Dai Chenyan,Lv Haining,Cao Chenrui,Zhou Zhenhua,Wang Limin,Gou Wenjing,Zhang Xiwen,Zhao Guangfeng,Hu YaliORCID

Abstract

Abstract Background Thin endometrium (TE) is a challenging clinical issue in the reproductive medicine characterized by inadequate endometrial thickness, poor response to estrogen and no effective treatments currently. At present, the precise pathogenesis of thin endometria remains to be elucidated. We aimed to explore the related molecular mechanism of TE by comparing the transcriptome profiles of late-proliferative phase endometria between TE and matched controls. Methods We performed a bulk RNA-Seq (RNA-sequencing) of endometrial tissues in the late-proliferative phase in 7 TE and 7 matched controls for the first time. Differential gene expression analysis, gene ontology enrichment analysis and protein-protein interactions (PPIs) network analysis were performed. Immunohistochemistry was used for molecular expression and localization in endometria. Human endometrial stromal cells (HESCs) were isolated and cultured for verifying the functions of hub gene. Results Integrative data mining of our RNA-seq data in endometria revealed that most genes related to cell division and cell cycle were significantly inhibited, while inflammation activation, immune response and reactive oxygen species associated genes were upregulated in TE. PBK was identified as a hub of PPIs network, and its expression level was decreased by 2.43-fold in endometria of TE patients, particularly reduced in the stromal cells, which was paralleled by the decreased expression of Ki67. In vitro experiments showed that the depletion of PBK reduced the proliferation of HESCs by 50% and increased the apoptosis of HESCs by 1 time, meanwhile PBK expression was inhibited by oxidative stress (reduced by 76.2%), hypoxia (reduced by 51.9%) and inflammatory factors (reduced by approximately 50%). These results suggested that the insufficient expression of PBK was involved in the poor endometrial thickness in TE. Conclusions The endometrial transcriptome in late-proliferative phase showed suppressed cell proliferation in women with thin endometria and decreased expression of PBK in human endometrial stromal cells (HESCs), to which inflammation and reactive oxygen species contributed.

Publisher

Springer Science and Business Media LLC

Subject

Developmental Biology,Endocrinology,Reproductive Medicine,Obstetrics and Gynecology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3