Detection rates of abnormalities in over 10,000 amniotic fluid samples at a single laboratory

Author:

Lu Sha,Kakongoma Nisile,Hu Wen-sheng,Zhang Yan-zhen,Yang Nan-nan,Zhang Wen,Mao Ai-fen,Liang Yi,Zhang Zhi-fen

Abstract

Abstract Background A growing number of cytogenetic techniques have been used for prenatal diagnosis. This study aimed to demonstrate the usefulness of karyotyping, BACs-on-Beads (BoBs) assay and single nucleotide polymorphism (SNP) array in prenatal diagnosis during the second trimester based on our laboratory experience. Methods A total of 10,580 pregnant women with a variety of indications for amniocentesis were enrolled in this retrospective study between January 2015 and December 2020, of whom amniotic fluid samples were analysed in 10,320 women. The main technical indicators of participants in the three different technologies were summarized, and cases of chromosome abnormalities were further evaluated. Results The overall abnormality detection rate of karyotyping among all the amniotic fluid samples was 15.4%, and trisomy 21 was the most common abnormality (20.9%). The total abnormality detection rate of the BoBs assay was 5.6%, and the diagnosis rate of microdeletion/microduplication syndromes that were not identified by karyotyping was 0.2%. The detection results of the BoBs assay were 100.0% concordant with karyotyping analysis in common aneuploidies. Seventy (87.5%) cases of structural abnormalities were missed by BoBs assay. The total abnormality detection rate of the SNP array was 21.6%. The detection results of common aneuploidies were exactly the same between SNP array and karyotyping. Overall, 60.1% of structural abnormalities were missed by SNP array. The further detection rate of pathogenic significant copy number variations (CNVs) by SNP was 1.4%. Conclusions Karyotyping analysis combined with BoBs assay or SNP array for prenatal diagnosis could provide quick and accurate results. Combined use of the technologies, especially with SNP array, improved the diagnostic yield and interpretation of the results, which contributes to genetic counselling. BoBs assay or SNP array could be a useful supplement to karyotyping.

Funder

Natural Science Foundation of Zhejiang Province

Science and Technology Program of Medicine and Health of Hangzhou

National Natural Science Foundation of China

“Pioneer” and “Leading goose” R&D Program of Zhejiang

Publisher

Springer Science and Business Media LLC

Subject

Obstetrics and Gynecology

Reference41 articles.

1. Hertel-Fernandez AW, Giusti AE, Sotelo JM. The Chilean infant mortality decline: improvement for whom? Socioeconomic and geographic inequalities in infant mortality, 1990-2005. Bull World Health Organ. 2007;85(10):798–804.

2. Ţarcă E, Roșu ST, Cojocaru E, et al. Socio-epidemiological factors with negative impact on infant morbidity, mortality rates, and the occurrence of birth defects. Healthcare (Basel). 2021;9(4):384.

3. Verma RP. Evaluation and risk assessment of congenital anomalies in neonates. Children (Basel). 2021;8(10):862.

4. World Health Organization. Birth defects. Available online: https://www.who.int/news-room/fact-sheets/detail/birth-defects. Accessed 14 Mar 2022.

5. Bhutta ZA, Das JK, Bahl R, et al. Can available interventions end preventable deaths in mothers, newborn babies, and stillbirths, and at what cost? Lancet. 2014;384(9940):347–70.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3