A bivalent porcine circovirus type 2 (PCV2), PCV2a-PCV2b, vaccine offers biologically superior protection compared to monovalent PCV2 vaccines

Author:

Bandrick MegganORCID,Balasch Monica,Heinz Andrea,Taylor Lucas,King Vickie,Toepfer Jeri,Foss Dennis

Abstract

AbstractRecent publications suggest PCV2 vaccine-induced protection is superior when the vaccine and challenge are closely matched. PCV2’s evolutionary rate, propensity for recombination, and genotype shifting, all provide rationale for modernizing PCV2 vaccines. One mechanism to increase a vaccine’s epitope breadth is by designing a bivalent vaccine. The objective of these studies was to evaluate efficacy of a monovalent (PCV1-2 chimera, cPCV2a or cPCV2b) and bivalent (cPCV2a–cPCV2b) vaccine in terms of homologous and heterologous efficacy. In Study A, pigs were vaccinated with cPCV2a or saline and challenged with PCV2a or PCV2b. In Study B, pigs were vaccinated with cPCV2a, cPCV2a–cPCV2b bivalent, or saline, and challenged with PCV2a. In Study C, pigs were vaccinated with cPCV2b, cPCV2a–cPCV2b bivalent, or saline, and challenged with PCV2b. In all studies vaccines and saline were administered intramuscularly to pigs at three to four weeks of age. Virulent PCV2b or PCV2a was administered to all animals approximately three weeks post-vaccination. Both mono and bivalent vaccinated groups demonstrated significantly lower viremia, percent of animals ever viremic, percent of animals with lymphoid depletion and/or histiocytic replacement, and percent of animals with PCV2 colonization of lymphoid tissues compared to saline controls. In Study A, a biologically relevant, though not significantly different, improvement in homologous versus heterologous protection was observed. In Studies B and C, biologically superior efficacy of the bivalent cPCV2a–cPCV2b vaccine compared to either monovalent vaccine was demonstrated. Taken together, cross-protection among mismatched PCV2 vaccine and challenge genotypes is not 100%; a bivalent PCV2 vaccine may provide the best opportunity to broaden coverage to circulating strains of PCV2.

Publisher

Springer Science and Business Media LLC

Subject

General Veterinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3