Fasciola hepatica soluble antigens (FhAg) induce ovine PMN innate immune reactions and NET formation in vitro and in vivo

Author:

Muñoz-Caro TamaraORCID,Gómez-Ceruti Marcela,Silva Liliana M. R.,Gutiérrez-Expósito Daniel,Wagner Henrik,Taubert Anja,Hermosilla Carlos

Abstract

AbstractFasciola hepatica causes liver fluke disease, a worldwide neglected and re-emerging zoonotic disease, leading to hepatitis in humans and livestock. In the pathogenesis, flukes actively migrate through liver parenchyma provoking tissue damage. Here, parasites must confront leukocytes of the innate immune system in vivo. Polymorphonuclear neutrophils (PMN) are the most abundant granulocytes and first ones arriving at infection sites. PMN may display neutrophil extracellular traps (NETs), consisting of nuclear DNA, decorated with histones, enzymes, and antimicrobial peptides. We investigated for the first time whether F. hepatica soluble antigens (FhAg) can also trigger NETosis and innate immune reactions in exposed ovine PMN. Thus, isolated PMN were co-cultured with FhAg and NET formation was visualized by immunofluorescence and scanning electron microscopy analyses resulting in various phenotypes with spread NETs being the most detected in vitro. In line, NETs quantification via Picogreen®-fluorometric measurements revealed induction of anchored- and cell free NETs phenotypes. Live cell 3D-holotomographic microscopy revealed degranulation of stimulated PMN at 30 min exposure to FhAg. Functional PMN chemotaxis assays showed a significant increase of PMN migration (p = 0.010) and intracellular ROS production significantly increased throughout time (p = 0.028). Contrary, metabolic activities profiles of FhAg-exposed PMN did not significantly increase. Finally, in vivo histopathological analysis on F. hepatica-parasitized liver tissue sections of sheep showed multifocal infiltration of inflammatory cells within liver parenchyma, and further fluorescence microscopy analyses confirmed NETs formation in vivo. Overall, we hypothesized that NET-formation is a relevant host defence mechanism that might have a role in the pathogenesis of fasciolosis in vivo.

Funder

FONDECYT

Justus-Liebig-Universität Gießen

Publisher

Springer Science and Business Media LLC

Subject

General Veterinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3