Dynamic rewiring of the human interactome by interferon signaling

Author:

Kerr Craig H.,Skinnider Michael A.,Andrews Daniel D. T.,Madero Angel M.,Chan Queenie W. T.,Stacey R. Greg,Stoynov Nikolay,Jan Eric,Foster Leonard J.ORCID

Abstract

Abstract Background The type I interferon (IFN) response is an ancient pathway that protects cells against viral pathogens by inducing the transcription of hundreds of IFN-stimulated genes. Comprehensive catalogs of IFN-stimulated genes have been established across species and cell types by transcriptomic and biochemical approaches, but their antiviral mechanisms remain incompletely characterized. Here, we apply a combination of quantitative proteomic approaches to describe the effects of IFN signaling on the human proteome, and apply protein correlation profiling to map IFN-induced rearrangements in the human protein-protein interaction network. Results We identify > 26,000 protein interactions in IFN-stimulated and unstimulated cells, many of which involve proteins associated with human disease and are observed exclusively within the IFN-stimulated network. Differential network analysis reveals interaction rewiring across a surprisingly broad spectrum of cellular pathways in the antiviral response. We identify IFN-dependent protein-protein interactions mediating novel regulatory mechanisms at the transcriptional and translational levels, with one such interaction modulating the transcriptional activity of STAT1. Moreover, we reveal IFN-dependent changes in ribosomal composition that act to buffer IFN-stimulated gene protein synthesis. Conclusions Our map of the IFN interactome provides a global view of the complex cellular networks activated during the antiviral response, placing IFN-stimulated genes in a functional context, and serves as a framework to understand how these networks are dysregulated in autoimmune or inflammatory disease.

Funder

Genome Canada

CIHR

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3