Abstract
Abstract
Background
The Mediterranean mussel Mytilus galloprovincialis is an ecologically and economically relevant edible marine bivalve, highly invasive and resilient to biotic and abiotic stressors causing recurrent massive mortalities in other bivalves. Although these traits have been recently linked with the maintenance of a high genetic variation within natural populations, the factors underlying the evolutionary success of this species remain unclear.
Results
Here, after the assembly of a 1.28-Gb reference genome and the resequencing of 14 individuals from two independent populations, we reveal a complex pan-genomic architecture in M. galloprovincialis, with a core set of 45,000 genes plus a strikingly high number of dispensable genes (20,000) subject to presence-absence variation, which may be entirely missing in several individuals. We show that dispensable genes are associated with hemizygous genomic regions affected by structural variants, which overall account for nearly 580 Mb of DNA sequence not included in the reference genome assembly. As such, this is the first study to report the widespread occurrence of gene presence-absence variation at a whole-genome scale in the animal kingdom.
Conclusions
Dispensable genes usually belong to young and recently expanded gene families enriched in survival functions, which might be the key to explain the resilience and invasiveness of this species. This unique pan-genome architecture is characterized by dispensable genes in accessory genomic regions that exceed by orders of magnitude those observed in other metazoans, including humans, and closely mirror the open pan-genomes found in prokaryotes and in a few non-metazoan eukaryotes.
Funder
Ministerio de Ciencia, Innovación y Universidades
Consellería de Economía, Emprego e Industria, Xunta de Galicia
Horizon 2020 Framework Programme
European Research Council
Publisher
Springer Science and Business Media LLC
Reference118 articles.
1. FAO Fisheries and Aquaculture Department. Cultured aquatic species information programme. Mytilus galloprovincialis. Cultured aquatic species information programme. Rome: FAO Fisheries and Aquaculture Department; 2020. http://www.fao.org/fishery/culturedspecies/Mytilus_galloprovincialis/en.
2. Bonham V. Mytilus galloprovincialis. Invasive species compendium. Wallingford: CAB; 2017.
3. Gosling E. Bivalve molluscs: biology, ecology and culture. Hoboken: Blackwell Publishing Ltd; 2003.
4. Fraïsse C, Belkhir K, Welch JJ, Bierne N. Local interspecies introgression is the main cause of extreme levels of intraspecific differentiation in mussels. Mol Ecol. 2016;25:269–86.
5. El Ayari T, Trigui El Menif N, Hamer B, Cahill AE, Bierne N. The hidden side of a major marine biogeographic boundary: a wide mosaic hybrid zone at the Atlantic–Mediterranean divide reveals the complex interaction between natural and genetic barriers in mussels. Heredity. Nat Publ Group; 2019;122:770–784.
Cited by
117 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献