The chromatin landscape of the euryarchaeon Haloferax volcanii

Author:

Marinov Georgi K.ORCID,Bagdatli S. Tansu,Wu Tong,He Chuan,Kundaje Anshul,Greenleaf William J.

Abstract

Abstract Background Archaea, together with Bacteria, represent the two main divisions of life on Earth, with many of the defining characteristics of the more complex eukaryotes tracing their origin to evolutionary innovations first made in their archaeal ancestors. One of the most notable such features is nucleosomal chromatin, although archaeal histones and chromatin differ significantly from those of eukaryotes, not all archaea possess histones and it is not clear if histones are a main packaging component for all that do. Despite increased interest in archaeal chromatin in recent years, its properties have been little studied using genomic tools. Results Here, we adapt the ATAC-seq assay to archaea and use it to map the accessible landscape of the genome of the euryarchaeote Haloferax volcanii. We integrate the resulting datasets with genome-wide maps of active transcription and single-stranded DNA (ssDNA) and find that while H. volcanii promoters exist in a preferentially accessible state, unlike most eukaryotes, modulation of transcriptional activity is not associated with changes in promoter accessibility. Applying orthogonal single-molecule footprinting methods, we quantify the absolute levels of physical protection of H. volcanii and find that Haloferax chromatin is similarly or only slightly more accessible, in aggregate, than that of eukaryotes. We also evaluate the degree of coordination of transcription within archaeal operons and make the unexpected observation that some CRISPR arrays are associated with highly prevalent ssDNA structures. Conclusions Our results provide the first comprehensive maps of chromatin accessibility and active transcription in Haloferax across conditions and thus a foundation for future functional studies of archaeal chromatin.

Funder

NIH

Rita Allen Foundation

Baxter Foundation Faculty Scholar Grant

Human Frontiers Science Program

Chan Zuckerberg Initiative

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3