Phase separation as a possible mechanism for dosage sensitivity

Author:

Yang Liang,Lyu Jiali,Li Xi,Guo Gaigai,Zhou Xueya,Chen Taoyu,Lin Yi,Li TingtingORCID

Abstract

Abstract Background Deletion of haploinsufficient genes or duplication of triplosensitive ones results in phenotypic effects in a concentration-dependent manner, and the mechanisms underlying these dosage-sensitive effects remain elusive. Phase separation drives functional compartmentalization of biomolecules in a concentration-dependent manner as well, which suggests a potential link between these two processes, and warrants further systematic investigation. Results Here we provide bioinformatic and experimental evidence to show a close link between phase separation and dosage sensitivity. We first demonstrate that haploinsufficient or triplosensitive gene products exhibit a higher tendency to undergo phase separation. Assessing the well-established dosage-sensitive genes HNRNPK, PAX6, and PQBP1 with experiments, we show that these proteins undergo phase separation. Critically, pathogenic variations in dosage-sensitive genes disturb the phase separation process either through reduced protein levels, or loss of phase-separation-prone regions. Analysis of multi-omics data further demonstrates that loss-of-function genetic perturbations on phase-separating genes cause similar dysfunction phenotypes as dosage-sensitive gene perturbations. In addition, dosage-sensitive scores derived from population genetics data predict phase-separating proteins with much better performance than available sequence-based predictors, further illustrating close ties between these two parameters. Conclusions Together, our study shows that phase separation is functionally linked to dosage sensitivity and provides novel insights for phase-separating protein prediction from the perspective of population genetics data.

Funder

Key Technologies Research and Development Program

National Natural Science Foundation of China

National Science and Technology Innovation 2030

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3